Screening Site Inspection Final Report

for

Drum Disposal Area ILD 984 791 681

November 8, 1996

Prepared For U.S. Environmental Protection Agency under Alternative Remedial Contracting Strategy Contract 68-W8-0064, Work Assignment 29-5JZZ

EPA Region 5 Records Ctr.

311366

Contents

1.0	Intro	oduction 1-1
2.0	Site	Background 2-1
	2.1	Introduction
	2.2	Site Description 2-1
	2.3	Site History 2-1
		2.3.1 Operational History 2-4
		2.3.2 Summary of Onsite Environmental Work 2-4
	2.4	Applicability of Other Statutes 2-7
3.0	Site	Inspection Activities and Analytical Results 3-1
	3.1	Introduction
	3.2	Site Reconnaissance 3-1
	3.3	Site Representative Interview
	3.4	Groundwater Sampling 3-6
	3.5	Surface Water and Sediment Sampling
	3.6	Soil Sampling
	3.7	Analytical Results 3-7
	3.8	Key Samples
4.0	Char	racterization of Sources 4-1
	4.1	Introduction
	4.2	Contaminated Soil 4-1
		4.2.1 Description
		4.2.2 Waste Characteristics
		4.2.3 Potentially Affected Migration Pathways 4-1
	4.3	Other Potential Sources Within 1 Mile 4-2
5.0	Disc	ussion of Migration Pathways 5-1
	5.1	Introduction 5-1
	5.2	Groundwater 5-1
	5.3	Surface Water 5-3
	5.4	Air 5-6

Contents (Continued)

	5.5	Soil	5-	∙6
6.0	Refe	rences		·1
			Tables	
Table	3 - 2 5 - 1	Key S Priva Public	Sample Summary	-8 -4
			Figures	
Figure Figure	e 2-2 e 3-1	Site I Samp	Location Map	3
			Appendices	
Appei	ndix	Α	Site 4-Mile Radius Map and Site 15-Mile Surface Water Route Map	е
Apper	ndix	В	USEPA Form 2070-13	
Apper	ndix	C	Target Compound List and Target Analyte List	
Apper	ndix	D	Analytical Results	
Apper	ndix	E	Site Photographs	
Apper	ndix	F	Representative Well Logs	

1.0 Introduction

On April 15, 1993, the Alternative Remedial Contracting Strategy (ARCS) Contractor was authorized, by the U.S. Environmental Protection Agency (USEPA) Region V, to conduct a screening site inspection (SSI) of the Drum Disposal Area site in Cook County, Illinois.

The site was initially placed on the Comprehensive Environmental Response, Compensation, and Liability Act Information System (CERCLIS) on August 29, 1990, by the Illinois Environmental Protection Agency (IEPA) as a result of a request for discovery action (IEPA 1991).

The site received its initial Comprehensive Environmental Response, Compensation, and Liability Act evaluation in the form of a preliminary assessment (PA) completed by IEPA on October 2, 1991 (USEPA 1993). The sampling portion of the SSI was conducted on November 16, 17, and 18, 1993, when the ARCS V contractor field team collected seven soil samples, three surface water samples, four sediment samples, and six groundwater samples.

The purposes of the SSI have been stated by USEPA in a directive outlining pre-remedial program strategies. The directive essentially states:

All sites will receive a SSI to 1) collect additional data beyond the PA to enable a more refined preliminary Hazard Ranking System (HRS) score, 2) to establish priorities among sites most likely to qualify for the National Priorities List (NPL), and 3) to identify the most critical data requirements for the expanded site inspection (ESI) step. An SSI will not have rigorous data quality objectives (DQOs). Based on the refined preliminary HRS score and other technical judgement factors, the site will then either be designated as no further remedial action planned (NFRAP) or carried forward as an NPL candidate. An ESI will not automatically be done on these sites. First, they will go through a management evaluation to determine whether they can be addressed by another authority such as Resource Conservation and Recovery Act (RCRA)... Sites that are designated as NFRAP or deferred to other statutes are not candidates for an ESI.

The ESI will address all data requirements of the revised HRS using field screening and NPL level DQOs. It may also provide needed data in a format to support remedial investigation work plan development. Only sites that appear to score high enough for listing and that have not been deferred to a higher authority will receive an ESI (USEPA 1988).

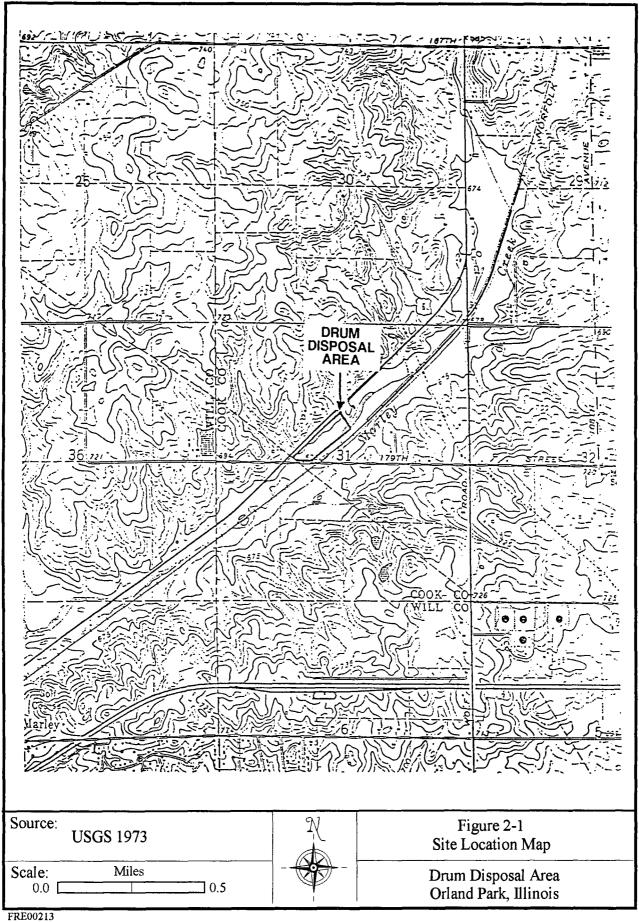
USEPA Region V requested that the ARCS V contractor identify sites during the SSI that may require removal action to remediate an immediate human health or environmental threat.

2.0 Site Background

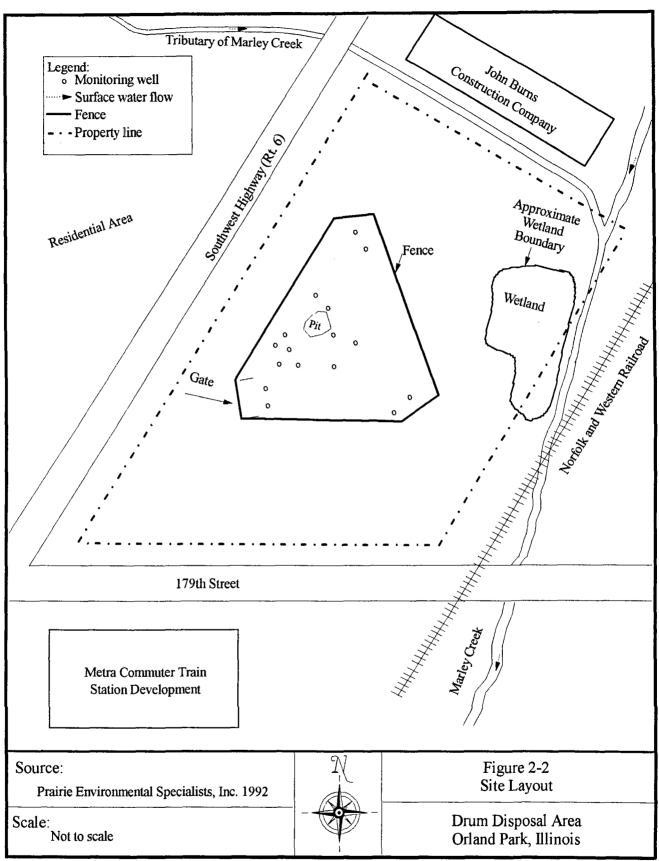
2.1 Introduction

This section includes information obtained during the SSI and from reports of previous site activity.

2.2 Site Description


The Drum Disposal Area site is approximately 1 mile southwest of the village of Orland Park, at the northeastern corner of Southwest Highway and 179th Street in Cook County, Illinois. The site occupies about 10 acres in the southeastern quarter of the northwestern quarter of Section 31, Township 36 North, Range 12 East of the Third Principal Meridian, Cook County, Illinois. Figure 2-1 is a site location map; Figure 2-2 is a site layout. The site layout varies from the figure in the site specific implementation plan because the ARCS V contractor gathered additional site information during sampling.

Approximately 1 acre of the site is fenced and secured. The site has relatively flat topography. Traditionally a rural setting, more recently the site area has begun to develop as residential and commercial sites move into the area. The site is bordered on the west by Southwest Highway, beyond which is a recently developed residential area. South of the site is 179th Street, beyond which is a Metra commuter train station under development. North of the site is the John Burns Construction Company. East of the site is Marley Creek and the Norfolk and Western Railroad.


A small rusted drum and a large rusted tank, 10 feet long and 3 feet in diameter, are present onsite, along with an assortment of rubbish, such as crushed stone, chunks of concrete, and railroad ties. This rubbish is in the fenced area. A drum excavation pit, about 5 feet deep, is in the western portion of the fenced area. A small wetland exists east of the fenced area.

2.3 Site History

Prairie Material Sales, Inc., owns the Drum Disposal Area site property. According to Gerry Krozel, vice president of Prairie Material Sales, Inc., the company purchased the property in the mid 1970s. A 1972 plat map shows the site belonged to S. M. Shively.

02.08.95

FRE00066

The USEPA became involved with the site in May 1989 when they received a complaint alleging that illegal dumping and filling of wetlands were occurring at the site. During investigation of the complaint by USEPA's emergency response section and the technical assistance team, approximately 42 rusted leaking drums; five empty 10,000 to 15,000 gallon tanks; four empty 500 to 1,000 gallon tanks; and scrap metal were found onsite. Analysis of samples collected from stained soil near the leaking drums indicated several contaminants, including acetone, methyl ethyl ketone, toluene, and xylene.

The IEPA became involved with the site in June 1989 when a complaint was received from an official of the Orland Park Planning Department. According to the complainant, drums were disposed of in a wetland area, and drums were leaking a "melted gum" type material (IEPA 1991).

Following these discoveries, USEPA prepared an Administrative Order by Consent (AOC) in which Prairie Material Sales, Inc., agreed to complete emergency removal activities at the site. The AOC was enacted on October 11, 1989.

2.3.1 Operational History

The Drum Disposal Area site was a concrete manufacturing business. Local residents stated the property has been vacant for many years. A 1965 aerial photograph indicates the site was vacant at that time, but later photographs (1976 and 1988) show filling activity at the site (IEPA 1991). According to information received from USEPA records, the site consisted of construction and demolition fill; several large, empty, concrete batch tanks; and drums (IEPA 1991).

2.3.2 Summary of Onsite Environmental Work

During the May 1989 USEPA investigation, samples were collected from five drums and stained surface soil. Analytical sample results showed two drum samples to be ignitable. Soil samples revealed the presence of acetone (2,700 parts per million [ppm]); methyl ethyl ketone (13,000 ppm); toluene (14,000 ppm); and total xylenes (4,700 ppm) (IEPA 1991).

Removal activities at the site began on June 17, 1989. During removal, drums were sampled, overpacked, and removed. Soil was excavated from the drum area. A composite soil sample showed the following results (IEPA 1991):

- methylene chloride (462 parts per billion [ppb])
- acetone (4,010 ppb)
- 2-butanone (262 ppb)
- toluene (3,500 ppb)
- total xylene (1,060 ppb)

Prairie Material Sales, Inc., overpacked 42 drums onsite. On December 14, 1989, the overpacked drums were delivered under a signed uniform hazardous waste manifest to Treatment One, Division of SET Environmental Inc., located at 5743 Chestwood Street, Houston, Texas, for disposal (Prairie Environmental Specialists, Inc. [PES] 1992).

In October 1990, approximately 20 additional cubic yards of soil were excavated in the drum area. As excavation progressed, air monitoring readings rose, indicating more contamination. Soils had strong organic odors, discoloration, and photoionization detector (PID) readings ranging from 15 to 200 ppm (PES 1992).

On October 19, 1990, four test pits (TP-1 through TP-4) were excavated by backhoe around the former drum disposal excavation pit to determine the vertical and horizontal extent of contamination. TP-1 had no affected soils. TP-2, TP-3, and TP-4 contained affected soils at depths of 5 to 12 feet. These soils had PID readings ranging from 40 to 300 ppm (PES 1992).

On October 29, 1990, PES conducted a Phase I subsurface investigation to characterize the extent of possible volatile organic compounds (VOCs) at the site. The investigation included drilling and sampling of nine shallow soil borings (SB-1 through SB-9), and installation and sampling of four monitoring wells (MW-1 through MW-4). Analytical soil sample results revealed detectable concentrations of benzene, ethylbenzene, toluene, xylenes, and tetrachloroethene. Detectable concentrations of benzene ranged from 0.092 ppm at SB-3 (12 to 14 feet) to 0.959 ppm at SB-6 (10 to 12 feet). Ethylbenzene concentrations ranged from non-detect to 0.134 ppm. Toluene concentrations ranged from 0.412 to 12.025 ppm, and xylenes ranged from 0.034 to 1.106 ppm. Tetrachloroethene concentrations ranged from 0.020 to 0.484 ppm. Four soil borings (SB-1, SB-3, SB-6, and SB-8) were converted to monitoring wells (MW-1, MW-2, MW-3, and MW-4) (PES 1992).

On November 8, 1990, PES collected the first round of groundwater samples. Analytical results indicated detectable concentrations of benzene and toluene in MW-3 at 0.055 ppm and 0.250 ppm. On April 10, 1991, PES collected a second round of

groundwater samples. Analytical results from all four monitoring wells indicated no detectable VOCs (PES 1992).

In February 1991, an aquifer slug test was conducted to obtain the hydraulic conductivity of the glacial drift aquifer. The hydraulic conductivity was determined to be 1.30 x 10⁻³ cm/s for MW-1 and 2.58 x 10⁻³ cm/s for MW-2. Both wells are screened in silty, clayey sand (PES 1992).

On July 23, 1991, an IEPA PA reconnaissance inspection was conducted at the site. The site was vacant and easily accessible because it was not enclosed by a fence. Most of the site consisted of an open area covered with gravel and sparse vegetation. Several large rusty tanks and various pieces of equipment were exposed onsite. IEPA recommended a low priority rating for a site inspection (IEPA 1991).

In response to a January 10, 1992, USEPA and IEPA meeting, a Phase II subsurface investigation was approved to characterize further the hydrogeologic site conditions and to delineate the extent of VOCs across the site (PES 1992). The investigation began on January 27, 1992. Three nested monitoring wells (MW-5S, MW-5D, MW-6S, MW-6D, MW-7S, and MW-7D) were installed. Each shallow and deep well nest was used to determine the hydrogeologic characteristics of subsurface soils, identify the water table interface, monitor the aquifer, and test for the presence of VOCs (PES 1992).

Phase II subsurface soil analytical results revealed chloroform, styrene, trichloroethene, and xylenes. Chloroform was detected at concentrations ranging from 0.008 to 0.40 ppm. Styrene was detected at concentrations ranging from 0.005 to 0.006 ppm. Trichloroethene and xylene were detected at 0.010 and 0.013 ppm (PES 1992).

On March 25, 1992, PES sampled monitoring wells from Phases I and II. Analytical results indicated only 2-methyl-2-pentanone in MW-1 at 0.075 ppm and in MW-3 at 0.022 ppm (PES 1992).

An onsite meeting with USEPA and IEPA was held on April 29, 1992. As an outcome of the meeting, Prairie Material Sales, Inc., agreed to conduct a Phase III subsurface investigation to characterize further VOC effects around the ground depression area caused by the initial soil removal activities. On June 2, 1992, eight additional soil borings (SB-10, SB-11, SB-12, SB-13, SB-14, SB-15, SB-16, and SB-17) were conducted. Five borings were used to install monitoring wells, MW-8 through MW-12 (PES 1992).

Phase III subsurface soil analytical results indicated benzene, ethylbenzene, 2-hexanone, 4-methyl-2-pentanone, xylenes, chloroform, chlorodibromomethane, and 1,2,3-trichloropropane. Benzene was detected at a concentration of 0.014 ppm in SB-16; ethylbenzene was detected at concentrations ranging from 0.017 to 0.046 ppm; 2-hexanone was detected at concentration ranging from 0.008 to 0.053 ppm; 4-methyl-2-pentanone was detected at concentrations ranging from 0.006 to 0.032 ppm; total xylenes were detected at concentrations ranging from 0.007 to 0.078 ppm; chloroform and chlorodibromomethane were detected in SB-16 at 0.056 and 0.034 ppm; and 1,2,3-trichloropropane was detected in SB-15 at 0.006 ppm (PES 1992).

On July 23, 1992, PES sampled the Phase III monitoring wells. Analytical results indicated no VOCs (PES 1992).

On June 17, July 23, and October 29, 1992, three separate rounds of static water level measurements were obtained for all onsite monitoring wells (PES 1992).

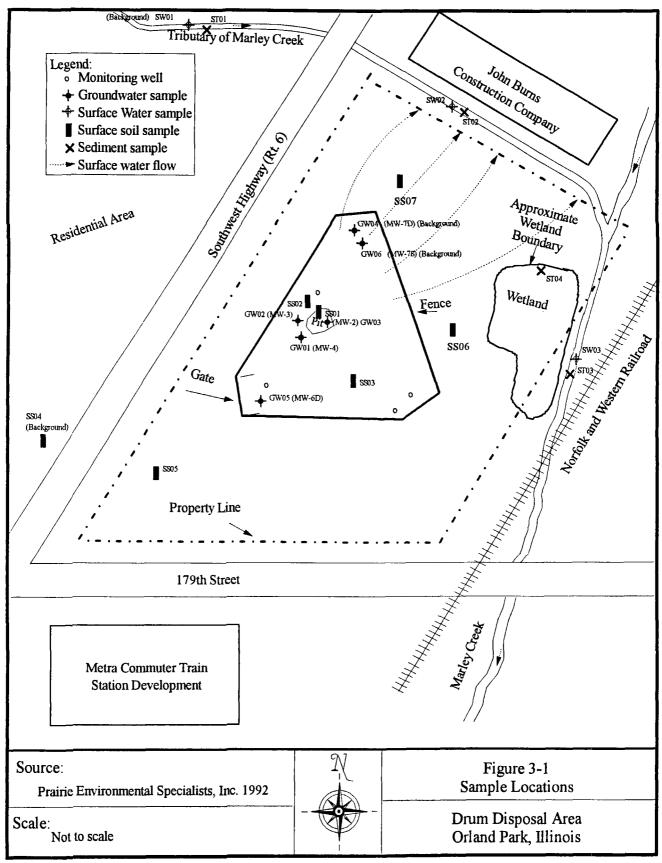
2.4 Applicability of Other Statutes

The Drum Disposal Area site is in the CERCLIS database for Illinois, under identification number ILD 984 791 681 (USEPA 1993). The Drum Disposal Area site is not in the Region V list of RCRA notifiers (USEPA 1994).

3.0 Site Inspection Activities and Analytical Results

3.1 Introduction

This section outlines procedures used and observations made during the SSI conducted at the Drum Disposal Area site. Sampling activities were conducted in accordance with the quality assurance project plan (ARCS V Contractor 1991). Figure 3-1 shows each sample location; Table 3-1 provides a summary of sample descriptions and locations. Figure 3-1 has been updated from a previous report, Site Specific Implementation Plan Figure 3, because of additional site information obtained during site sampling. Appendix A presents a map of the area within a 4-mile radius of the site and a map showing the 15-mile downstream surface water route. Appendix B presents the USEPA Potential Hazardous Waste Site Inspection Report (Form 2070-13).


Samples collected for this SSI were analyzed for organic and inorganic substances contained on the USEPA Target Compound List (TCL) and Target Analyte List (TAL) by USEPA Contract Laboratory Program participant laboratories. Appendix C presents the TCL and TAL. Appendix D presents a summary of all analytical data generated by SSI sampling. Appendix E contains photographs of the site and sample locations. Appendix F contains the logs of wells sampled during the SSI.

3.2 Site Reconnaissance

On July 1, 1993, a reconnaissance of the Drum Disposal Area site was conducted. This visit included a visual site inspection to determine the status, facility activities, health or safety hazards, and potential sampling locations.

3.3 Site Representative Interview

The reconnaissance team interviewed Mr. Gerry Krozel, Mr. Robert E. Renguso, and Mr. Richard A. Andros, on July 1, 1993, at the Drum Disposal Area site in Orland Park, Cook County, Illinois. The team discussed the purpose of the SSI and gathered site-specific information.

FRE00075

	Table 3-1 Sample Descriptions					
Sample	Depth	Appearance	Location			
GW01	14 feet* (glacial drift)	Clear	Collected from MW-4 adjacent to the southwestern side of the pit in the fenced area.			
GW02	14 feet* (glacial drift)	Clear	Collected from MW-3 adjacent to the western side of the pit in the fenced area.			
GW03	14 feet* (glacial drift)	Clear	Collected from MW-2 in the pit in the fenced area.			
GW04	49 feet* (glacial drift/ Silurian dolomite)	Clear	Collected from MW-7D northeast of the pit in the fenced area. Background location for glacial drift/Silurian dolomite interface.			
GW05	59.5 feet* (glacial drift/ Silurian dolomite)	Clear	Collected from MW-6D southwest of the pit in the fenced area.			
GW06	21 feet* (glacial drift)	Clear	Collected from MW-7S northeast of the pit in the fenced area. Background location for glacial drift.			
SW01	1 foot	Turbid	Collected approximately 20 feet west of Southwest Highway upstream of the site from the southern bank of a tributary into Marley Creek. Background location.			
SW02	0-3 inches	Turbid	Collected in tributary that feeds Marley Creek northeast of the site at the probable point of runoff entry into the creek.			

^{*} Depth measured from ground surface to bottom of well.

	Table 3-1 (Continued) Sample Descriptions					
Sample	Depth	Appearance	Location			
SW03	1 foot	Turbid	Collected downstream in Marley Creek east of the site and west of the Norfolk and Western Railroad.			
ST01	0-3 inches	Dark brown to black, sandy silt with organic material	Collected approximately 20 feet west of Southwest Highway upstream of the site from the southern bank of a tributary into Marley Creek. Background location.			
ST02	0-3 inches	Dark brown sandy silt with organic material.	Collected in tributary that feeds Marley Creek northeast of the site at the probable point of runoff entry into the creek.			
ST03	0-3 inches	Medium brown sandy silt with organic material.	Collected downstream in Marley Creek east of the site and western of the Norfolk and Western Railroad.			
ST04	0-3 inches	Light grey gravelly silty sand.	Collected in onsite wetland in the eastern portion of the site.			
SS01	6 inches	Red brown to dark brown silty clay.	Collected in the pit within the fenced area; 32' east of the western fence line and 4' south of MW-2.			
SS02	6 inches	Dark brown to black clayey silt.	Collected adjacent and northwest of the pit within the fenced area; 7' east of the western fence line and 5' south of MW-10.			
SS03	6 inches	Light brown sandy gravel.	Collected south of the pit within the fenced area; 71' east of fence line and 72' north of southern fence line.			
SS04	6 inches	Dark brown to black clayey silt.	Collected on the western side of Southwest Highway; 163' north of 179th Street and 62 feet west of Southwest Highway. Background location.			

	Table 3-1 (Continued) Sample Descriptions								
Sample	Sample Depth Appearance Location								
SS05	6 inches	Dark brown sandy gravel.	Collected south of the fenced area; 99' east of Southwest Highway and 190' south of fence.						
SS06	6 inches	Brown to dark brown sandy clay.	Collected east of the fenced area; 36' north of northern fence line and 120' east of Southwest Highway.						
SS07 6 inches Brown to dark brown sandy clay. Collected north of the fenced area; 69 east of Southwest Highway and 82 north of northern fence line.									

3.4 Groundwater Sampling

On November 16 and November 17, 1993, the ARCS V field team collected six groundwater samples on the Drum Disposal Area site. Figure 3-1 presents the approximate sample locations; Table 3-1 describes the samples.

Samples were labeled GW01 through GW06. Sample GW01 was collected with a stainless steel bailer from monitoring well four (MW-4) located adjacent to the southwestern side of the pit. Sample GW02 was collected with a stainless steel bailer from MW-3 located adjacent to the western side of the pit. Sample GW03 was collected with a stainless steel bailer from MW-2 located in the pit. Sample GW04 was collected with a stainless steel bailer from MW-7D located northeast of the pit. Sample GW04 is a background location for the glacial drift/Silurian dolomite interface. Sample GW05 was collected from a stainless steel bailer from MW-6D located southwest of the pit. Sample GW06 was collected from a stainless steel bailer from MW-7S located northeast of the pit. Sample GW06 is a background location for the glacial drift.

Groundwater samples scheduled for inorganic analysis were shipped to SVL Analytical, Inc., in Kellogg, Indiana, on November 17, 1993. Samples scheduled for organic analysis were shipped to Keystone Laboratory in Houston, Texas, on November 17, 1993.

3.5 Surface Water and Sediment Sampling

On November 18, 1993, the ARCS V field team collected three surface water and four sediment samples from the Drum Disposal Area site. Figure 3-1 presents the approximate sample locations; Table 3-1 describes the samples.

Surface water samples were labeled SW01 through SW03. Sediment samples were labeled ST01 through ST04. Samples SW01 and ST01 were collected approximately 20 feet west of Southwest Highway upstream of the site from the southern bank of a tributary into Marley Creek. These samples are upgradient from the site and are assumed to be representative of background surface water conditions. Samples SW02 and ST02 were collected in the tributary that feeds Marley Creek northeast of the site at the probable point of runoff entry into the creek. Samples SW03 and ST03 were collected downstream at Marley Creek east of the site and west of the Norfolk and Western Railroad. Sample ST04 was collected from the onsite wetland at the beginning of the point of entry from probable runoff.

Surface water samples scheduled for inorganic analysis were shipped to ITMO in Earth City, Missouri, on November 18, 1993. Sediment samples scheduled for inorganic analysis were shipped to SVL Analytical, Inc., in Kellogg, Indiana, on November 18, 1993. Surface water samples scheduled for organic analysis were shipped to Encotec in Ann Arbor, Michigan, on November 18, 1993. Sediment samples scheduled for organic analysis were shipped to Keystone Laboratory in Houston, Texas, on November 18, 1993.

3.6 Soil Sampling

On November 16, 1993, the ARCS V field team collected seven surface soil samples from the site. Figure 3-1 presents the approximate sample locations; Table 3-1 describes the samples.

Soil samples were labeled SS01 through SS07. Sample SS01 was collected in the pit within the fence to investigate present soil conditions. Sample SS02 was collected adjacent to the pit within the fence to investigate the potential presence of constituents. Sample SS03 was collected south of the pit and within the fence to investigate the potential presence of constituents. Sample SS04 was collected on the western side of Southwest Highway to serve as an offsite background location. Sample SS05 was collected south of the fenced area to investigate the potential presence of constituents. Sample SS06 was collected northeast of the fenced area to investigate the potential presence of constituents. Sample SS07 was collected north of the fenced area to investigate the potential presence of constituents.

3.7 Analytical Results

This section summarizes analytical results from SSI samples. Appendix D presents SSI analytical data.

Laboratory analysis of groundwater samples detected one pesticide and several inorganic analytes. Laboratory analysis of the surface water samples detected one inorganic analyte. Laboratory analysis of the sediment samples detected inorganic analytes. Laboratory analysis of the surface soil samples detected a VOC, semivolatile organic compounds (SVOCs), a pesticide, and inorganic analytes.

3.8 Key Samples

"Key samples" are those samples that contain substances in sufficient concentration to document an observed release. Table 3-2 identifies SSI key samples.

Table 3-2 Key Sample Summary									
Groundwater (µg/L)									
	Sample Number/Aquifer								
Substance	GW01 Glacial Drift	GW02 Glacial Drift	GW03 Glacial Drift	GW06* Glacial Drift	GW05 Glacial Drift/ Silurian dolomite	GW04* Glacial Drift/ Silurian dolomite			
4,4'-DDD	4,4'-DDD 0.48 J 0.1								
Aluminum	uminum 750.0 30.6 B —		_	25.0 U	_	_			
Cobalt	_	8.8 B	_	4.0 U	_	_			
Copper	4.5 JBN**		_	2.0 UJN		.—			
Iron	856 J	_	_	70.1 UB	_	_			
Lead 17.1 S 1.0 UJW -									
Potassium – – – 10100									
Manganese	_	939 J	_	55.3 J	_	_			
Thallium			1.1 BW	1.0 UJW	_				
Zinc	37.1 J**	-	_	3.0 JB**	_	_			

Surface Water (µg/L)							
	Sample Number/Aquifer						
Substance	SW01*	SW03					
Sodium	10200 J	39200					

Sediments (µg/kg)							
6.1		Sample Number					
Substance	ST01*	ST02	ST04				
Barium	114000	_	352000				
Cadmium	720 U	820 B	_				
Magnesium	5710000	_	22900000				
Sodium	109000 B	_	401000 B				

Table 3-2 (Continued) Key Sample Summary

Surface Soil (µg/kg)

			Sample Nu	mber		
Substance	SS01	SS03	SS04*	SS05	SS06	SS07
Methylene Chloride	19 B	_	12 U	_		_
Phenanthrene	_	1600	400 U	_	_	_
Anthracene	_	420	400 U		_	
di-n-Butylphthalate	_	_	400 U	640		
Fluoranthene	_	2300	400 U			_
Pyrene	-	2200	400 U	_	_	
Benzo(a)Anthracene		930	400 U	_	_	_
Chrysene		1000	400 U	_		
Benzo(b)Fluoranthene		1000	400 U	-	_	
Benzo(a)Pyrene		460	400 U		_	
Gamma-BHC (Lindane)	-	4.7 PX	2.1 UJ	_	_	
Arsenic	_	_	8800	28900	_	
Barium			101000	6930000		
Beryllium	_	1000 B	830 B	3400 J	960 B	1000 B
Cadmium		_	660 U	1000 B	_	_
Calcium	_	129000000	2050000	91100000		
Copper	_	_	20200 J	129000	_	
Magnesium		47700000	2890000 J	12900000	-	
Mercury	80 B	_	60 U	_	_	
Nickel	28200	_	21400 U	29300 J	_	30100
Selenium		. –	420 JBW	4500 B	-	_
Sodium	_	_	65200 UB	17900000 J	-	_
Vanadium	-		25800 J	134000 J		

Table 3-2 (Continued) Key Sample Summary

- Background groundwater sample.
- ** Duplicate analysis was not within control limits.
- Compound or element not at elevated levels to indicate a key sample.
- GW Groundwater sample.
- SW Surface water sample.
- ST Sediment sample.
- SS Surface soil sample.
- J Reported value estimated.
- U Substance undetected; reported value is the sample quantitation limit.
- B Organic: Compound found in the associated blank as well as in the sample.

 Inorganic: Reported value less than the contract required detection limit and greater than or equal to the instrument detection limit.
- S Reported value determined by the method of Standard Additions.
- W Post-digestion spike for AA analysis is out of control limits, while sample absorbance is less than 50 percent of spike absorbance.
- N Spiked sample recovery not within control limits.
- P Greater than 25 percent difference for detected concentration between the two GC columns.
- X The lack of confidence of a reported analyte whose retention times are within required windows on both columns, the lower concentration exceeds CRQLs, but the percent difference exceeds 75 percent.

Key groundwater samples revealed the presence of one pesticide and nine inorganic analytes in the glacial drift and the glacial drift/Silurian dolomite interface aquifer. The pesticide was 4,4'-DDD. Inorganic analytes included aluminum, cobalt, copper, iron, lead, potassium, manganese, thallium, and zinc.

Key surface water samples revealed the presence of one inorganic analyte, sodium. The key sediment sample revealed the presence of four inorganic analytes, which were barium, cadmium, magnesium, and sodium.

The key surface soil samples revealed the presence of 1 VOC, 9 SVOCs, 1 pesticide, and 12 inorganic analytes at the Drum Disposal Area site. The VOC is methylene chloride. SVOCs included phenanthrene, anthracene, di-n-butylphthalate, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, and benzo(a)pyrene. The pesticide was gamma-BHC (lindane). Inorganic analytes included arsenic, barium, beryllium, cadmium, calcium, copper, magnesium, mercury, nickel, selenium, sodium, and vanadium.

4.0 Characterization of Sources

4.1 Introduction

The site reconnaissance and analysis of SSI samples identified the site soil as the source of hazardous substances.

4.2 Contaminated Soil

4.2.1 Description

Analyses of SSI samples SS01 through SS07 indicate approximately 4 acres of soil contain, to some extent, organic and inorganic substances listed in Table 3-2. Samples were taken within the fenced area and north and south of the fenced area. This area is defined by key sample locations that document observed releases.

4.2.2 Waste Characteristics

SSI analytical results indicated the area of affected soil contains releases of a VOC, SVOCs, pesticides, and inorganic analytes. The VOC was methylene chloride (19 ppb); the SVOCs included phenanthrene (1,600 ppb); anthracene (420 ppb); di-n-butyphthalate (640 ppb); fluoranthene (2,300 ppb); pyrene (2,200 ppb); benzo(a)anthracene (830 ppb); chrysene (1,000 ppb); benzo(b)fluoranthene (1,000 ppb); and benzo(a)pyrene (460 ppb). The pesticide was gamma-BHC (4.7 ppb). The inorganic analytes were arsenic (28,900 ppb); barium (6,930,000 ppb); beryllium (960 to 3,400 ppb); cadmium (1,000 ppb); calcium(91,100,000 to 129,000,000 ppb); copper (129,000 ppb); magnesium (12,900,000 to 47,700,000 ppb); mercury (80 ppb); nickel (28,200 to 30,100 ppb); selenium (4,500 ppb); sodium (17,900,000 ppb); and vanadium (134,000 ppb).

4.2.3 Potentially Affected Migration Pathways

Pathways other than soil may be affected. Infiltrating precipitation may transport compounds from the soil to the saturated portion of the surficial sand and gravel aquifer and affect the groundwater pathway.

The air pathway may be of concern, especially during dry periods, when substances in surficial soil could be transported to nearby populated areas as airborne particulate matter.

4.3 Other Potential Sources Within One Mile

Review of the USEPA CERCLIS and RCRA lists showed Van Bruggen Sign Company is approximately one-half mile northwest of the site. Van Bruggen Sign Company is on the Illinois RCRA list, ILD 046 568 978.

5.0 Discussion of Migration Pathways

5.1 Introduction

This section includes information useful in analyzing the potential effect of contaminants found at the Drum Disposal Area site on the four migration pathways: groundwater, surface water, air, and soil.

5.2 Groundwater

Four glacial drift and two glacial drift/Silurian dolomite interface monitoring wells were sampled during this SSI. Both the glacial drift and glacial drift/Silurian dolomite interface monitoring wells are screened in the glacial drift. Four glacial drift monitoring wells are MW-2, MW-3, MW-4, and MW-7S. MW-2, MW-3, and MW-4 are screened from 9 to 14 feet below ground level (BGL) (PES 1992). MW-7S is screened from 5 to 21 feet BGL (PES 1992). Two glacial drift/Silurian dolomite interface monitoring wells are MW-6D and MW-7D. MW-6D is screened in the lower portion of the glacial drift on top of the Silurian dolomite, from 49.5 to 59.5 feet BGL (PES 1992). The Silurian dolomite was encountered at 59.5 feet BGL. MW-7D is screened in the lower portion of the glacial drift and into the Silurian dolomite, from 39 to 49 feet BGL (PES 1992). The Silurian dolomite was encountered at 47 feet BGL. A southwesterly groundwater flow was determined from static water level measurements from monitoring wells MW-1, MW-2, and MW-4 recorded from November 1990 to April 1991 (PES 1992). Analytical results of monitoring well samples indicate the presence of one pesticide and nine inorganic compounds.

Regional geologic reports and area well logs indicate Orland Park is blanketed by unconsolidated, Quaternary age, glacial drift [Willman 1971, Illinois State Water Survey (ISWS) 1993]. The glacial drift is predominantly gray, silty clay with localized sand and gravel units. Glacial drift thickness varies between approximately 50 and 100 feet.

Directly beneath and interconnected with the glacial drift is the Silurian dolomite aquifer. This is a shallow bedrock aquifer in Cook County that receives local recharge from precipitation (Hughes et al. 1966). The Silurian dolomite varies in thickness with a maximum of nearly 500 feet in the southeastern part of Cook County. Depth to the top of the aquifer varies throughout the area from approximately 60 to more than 100 feet (ISWS 1993).

The deep bedrock aquifer system below Orland Park is the Cambrian-Ordovician system (Hughes et al. 1966). Depth to the Cambrian-Ordovician aquifer system is approximately 550 feet. The shallow aquifer system and the deep aquifer system are not thought to be interconnected because the Maquoketa shale is directly below the Silurian dolomite. The Maquoketa shale is approximately 50 feet thick and acts as an impermeable boundary preventing the downward migration of water (Willman 1971).

Site specific well logs indicate approximately 50 feet of unconsolidated glacial drift lying atop Silurian age bedrock (Kohl 1992). The glacial drift mainly consist of silty clay with sand lenses (Kohl 1992). The water table was encountered approximately 10 to 12 feet below ground surface.

The Illinois State Water Survey (ISWS) Private and Public-Industrial-Commercial (PICs) database indicates approximately 1,581 private wells serve approximately 4,474 residents within 4 miles of the site [ISWS 1993, U.S. Department of Commerce (USDC) 1990]. Nineteen private wells draw water from the glacial drift. Of these 19 private wells, 1 is located 0.25 to 0.50 mile from the site, 7 are located 1 to 2 miles from the site, 4 are located 2 to 3 miles from the site, and 7 are located 3 to 4 miles from the site. There are private wells drawing water from the Silurian dolomite. Of these wells, 2 are located within 0.25 mile from the site, 5 are located 0.25 to 0.50 mile from the site, 23 are located 0.50 to 1 mile from the site, 293 are located within 1 to 2 miles from the site, 599 are located 2 to 3 miles from the site, and 640 are located 3 to 4 miles from the site. One private well draws water from the Cambrian-Ordovician aquifer. This well is located 1 to 2 miles from the site.

The town of Mokena uses groundwater as its primary municipal source. Mokena's four municipal wells are located approximately 1.5 to 3 miles southeast of the site. They are screened in the Silurian dolomite and are approximately 200 to 400 feet deep. The well system serves about 6,128 residents. Within 3 to 4 miles of the site is a municipal well used as a backup system serving Orland Park. The well serves about 19,510 people. Orland Park receives Lake Michigan water. The backup well is screened in the Silurian dolomite and is approximately 400 feet deep. Seven school wells draw water from the Silurian dolomite aquifer: one well is within 2 miles of the site; three are within 3 miles of the site; and the other three wells are within 4 miles of the site. Each school well is arbitrarily assigned a value of 1,000 persons using each well.

Table 5-1 presents estimated populations using private wells within 4 miles of the Drum Disposal Area site. Table 5-2 presents public water supply sources within 4 miles of the site. Private and municipal well locations were obtained from the ISWS PICs databases (ISWS 1993). Well locations were plotted on U.S. Geological Survey (USGS) 7.5' quadrangle topographic maps (USGS 1973, 1980). Populations associated with each private well were determined using an average of 2.83 persons per household. This is an average of Cook (2.67) and Will (2.98) counties (USDC 1990). Municipal water well populations, whether primary source or backup, were determined using the IEPA groundwater source location report (IEPA 1985).

5.3 Surface Water

The Drum Disposal Area site is undeveloped with relatively flat topography. Site runoff flows northeast into the tributary of Marley Creek. The northeastern side of the site is defined as the probable point of entry of overland flow into the surface water pathway. Within 15 downstream miles of the site, the name and length of each in water segment are a tributary of Marley Creek (0.25 mile), Marley Creek (5.75 miles), and Hickory Creek (9 miles).

Surface water and sediment samples were both taken from the same two locations in the tributary of Marley Creek and one location in Marley Creek, to evaluate potential releases to the surface water pathway. A sediment sample was taken from an onsite wetland. Background samples SW01/ST01 were collected from the southern bank of the tributary of Marley Creek approximately 20 feet west of Southwest Highway. Samples SW02/ST02 were collected from the tributary of Marley Creek northeast of the site at the probable point of runoff entry into the creek. Samples SW03/ST03 were collected downstream in Marley Creek east of the site and west of the Norfolk and Western Railroad. Sediment sample ST04 was collected from an onsite wetland, located in the northeastern part of the site. No surface water or sediment samples were taken north of the confluence because of minimal surface water flow into the tributary of Marley Creek and Marley Creek confluence. The majority of the water flow to the confluence was from the tributary of Marley Creek. Inorganic contaminants barium, magnesium, and sodium found in onsite soil have migrated to the onsite wetland. The inorganic contaminant cadmium found in onsite soil migrated to the tributary of Marley Creek. The inorganic contaminant sodium found in onsite soil migrated to Marley Creek.

Table 5-1 Private Well Users					
Radial Distance From Drum Disposal in Miles	Approximate Population Served By Private Wells				
0.00 to 0.25	6				
0.25 to 0.50	17				
0.50 to 1.00	65				
1.00 to 2.00	849				
2.00 to 3.00	1,706				
3.00 to 4.00	1,831				
Total Population:	4,474				

	Public Water Supply	Table 5-2 Public Water Supply Sources Within 4 Miles of Drum Disposal Area	al Area	
Distance/Direction From Site	Source Name	Location of Source	Approximate Population Served	Source Type
1-2 miles southeast	Mokena, Illinois Municipality	Northeast corner of 191 St. and 114th Ave in Sec. 6, T 35 N, R 12 E.	1,532	Silurian dolomite (355 feet deep)
2-3 miles southeast	Mokena, Illinois Municipality	Southeast corner 191 St. and Rt. RR in Sec. 9, T 35 N, R 12 E.	1,532	Silurian dolomite (420 feet deep)
2-3 miles southeast	Mokena, Illinois Municipality	Bonnes and Wolf adjacent to tower in Sec. 8, T 35 N, R 12 E.	1,532	Silurian dolomite (417 feet deep)
2-3 miles southeast	Mokena, Illinois Municipality	Section 8, T 35 N, R 12 E.	1,532	Silurian dolomite (225 feet deep)
3-4 miles northwest	Orland Park, Illinois Municipality	Section 17, T 36 N, R 12 E.	19,510	Silurian dolomite (397 feet deep)
1-2 miles east	Maue School, Illinois School Well	Section 32, T 36 N, R 12 E.	1,000 (assumed)	Silurian dolomite (assumed)
2-3 miles south	St. Marys School, Illinois School Well	Section 7, T 35 N, R 12 E.	1,000 (assumed)	Silurian dolomite (assumed)
2-3 miles south	Willowcrest School, Illinois School Well	Section 7, T 35 N, R 12 E.	1,000 (assumed)	Silurian dolomite (assumed)
2-3 miles north	Doctor School, Illinois School Well	Section 18, T 36 N, R 12 E.	1,000 (assumed)	Silurian dolomite (assumed)
3-4 miles southwest	Lincoln Way High School, Illinois School Well	Section 14, T 35 N, R 11 E.	1,000 (assumed)	Silurian dolomite (assumed)
3-4 miles northeast	Fernway School, Illinois School Well	Section 22, T 36 N, R 12 E.	1,000 (assumed)	Silurian dolomite (assumed)
3-4 miles	Arbury Hills School, Illinois School Well	Section 10, T 35 N, R 12 E.	1,000 (assumed)	Silurian dolomite (assumed)

The tributary of Marley Creek, Marley Creek, and Hickory Creek are fresh water systems used as fisheries.

The site is in a 100 year flood plain (Federal Emergency Management Agency 1981).

Surface water is not used as a drinking water source within 15 miles downstream of the site. No drinking water intakes exist in the downstream target distance limit.

Within 4 miles of the site and 15 miles downstream of the site are three threatened species (pied-billed grebe, blazing star, and veery) and two endangered species (slippershell mussel and red-shouldered hawk) [Illinois Department of Conservation (IDOC) 1994].

5.4 Air

No documented air releases are known, and none was observed during the SSI. However, the presence of a VOC, SVOCs, pesticides, and inorganics at or near the ground surface creates the potential for windblown particulates that could be an inhalation hazard to anyone at the site. The site is undeveloped and unpaved; gravel and grass cover most of the property. Site access is unrestricted, except for the 6 foot chain-link fence with barbed wire that surrounds the monitoring well area.

Nearby wetlands and sensitive environments are also a possible target for windblown chemicals. Three threatened species and two endangered species exist within 4 miles of the site and along the 15 mile downstream target distance limit (IDOC 1994). Messenger Woods Natural Area is within 4 miles of the site. Hickory Sedge Meadow Natural Area and Pilcher Park National Area are along the downstream target distance limit.

5.5 Soil

Seven soil samples were collected from the Drum Disposal Area site. One soil sample was collected across Southwest Highway as a background. Direct contact with affected site soils is possible. Soil samples showed the presence of a VOC, SVOCs, pesticides, and heavy metals at or near the ground surface.

6.0 References

- ARCS V Contractor, 1991. Quality Assurance Project Plan for Region V Superfund Site Assessment Program, September 27.
- Federal Emergency Management Agency (FEMA), 1981. Flood Insurance Rate Map, Panel 215 of 245 for Cook County (Unincorporated Areas).
- Hughes, G.E., et al., 1966. "Bedrock Aquifers of Northeastern Illinois," Illinois State Geological Survey, Circular 460.
- Illinois Department of Conservation (IDOC), 1994. National Heritage Database.
- Illinois Environmental Protection Agency (IEPA), 1985. "Groundwater Source Location Report," Division of Public Water Supplies.
- IEPA, 1991. CERCLA Preliminary Assessment Report for Drum Disposal Area, September 27.
- Illinois State Water Survey, 1993. Private and PICS Databases and copies of area well logs.
- Kohl, M.J., et al., 1992. "Report of Findings from the Phase II & III Subsurface Investigation at Prairie Material Sales, Inc.," Prairie Environmental Specialists, Inc. November 11.
- Prairie Environmental Specialists, Inc. (PES), 1992. Report of Findings from the Phase II & III Subsurface Investigation at Prairie Material Sales, Inc., November 11.
- U.S. Department of Commerce (USDC), 1990. "Summary Population and Housing Characteristics Illinois"

U.S. Environmental Protection Agency (USEPA), 1988. "Pre-Remedial Strategy for Implementing SARA," Office of Solid Waste and Emergency Response, Washington, D.C., Directive Number 9345.2-101, February 12.

USEPA, 1993. Illinois CERCLIS List, October 4.

USEPA, 1994. Illinois RCRA List, March 10.

U.S. Geological Survey, 1973. 7.5 minute quadrangle, topographic map, Mokena.

U.S. Geological Survey, 1980. 7.5 minute quadrangle, topographic map, Tinley Park.

Willman, H.B., 1971. "Summary of the Geology of the Chicago Area," Illinois State Geological Survey, Circular 460.

Appendix A

Site 4-Mile Radius Map and Site 15-Mile Surface Water Route Map Appendix B

USEPA Form 2070-13

Drum Disposal Area

SEPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 1 - SITE LOCATION AND INSPECTION INFORMATION

I. IDENTIFICATION

OI STATE OZ STE NUMBER

ILD 984 791 681

THE HAME AND LOCATION					
Party Police August annual of annual party of heat		!	• -	ECIFIC LOCATION IDENTIFIER	
. Drum Disposal Area				and Southwest H	
Orland Park		IL	60462	COOK	031 3
41 33 57 87 54 00 -	10 TYPE OF OWNERSH A. PRIVATE F. OTHER	O B. FE	DERAL	C C. STATE C O. COUNTY	
IL INSPECTION INFORMATION DATE OF INSPECTION 02 SITE STATUS	03 YEARS OF OPERA	DON			
11 / 16 93 DACTIVE		id 197	'Osl Presen		
DE MITE DE MITECOMPLETOR			NUNCIPAL G D.)	AUNICIPAL CONTRACTOR	(Name of Prin)
S CHEF RAPECTOR	OS TITLE		777EN	1 SOCCY)	I DA TELEPHONE NO.
Mitchell Balek		l Eng	ineer	BVWS	(312) 346-3775
ON OTHER MSPECTORS	10 TILE			11 ORGANIZATION	12 TELEPHONE NO.
Joanne Gonzalez	Civil	Eng ⁻	ineer ——————	BVWS	(312) 346-377!
Alison Cataldo	Techr	nician) , :	BVWS	812, 346-377
Baltazar Berena	Techr	niciar	1	- BVWS	B 12)346-3775
					()
•			!	1	()
13 SITE REPRESENTATIVES INTERVIEWED	Project		15ADORESS	Roosevelt Rd.	18 TELEPHONE HO
Robert Renguso	Manager		Suite 104	NOUSEVETT Nu.	708 293-444
				go, Il. 60185	()
					()
					()
					()
					()
`					
17 ACCESS CAMED BY 18 TIME OF INSPECTION (C) (C) (C) (C) (C) (C) (C) (C	19 WEATHER CO		', overcast	skies	
IV. INFORMATION AVAILABLE FROM	100.0				
Robert Renguso	Prairie	-	ronmental S	pecialists, Inc.	(708) 293-444
Mitchell Balek	USEPA	į į	BVWS	312-346-3775	05,31,94

SEPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 2 - WASTE INFORMATION

I. IDENTIFICATION
OI STATE OF STENUMBER
ILD 984 791 681

II. WASTE ST	TATES, QUANTITIES, AN	ID CHARACTER	STICS				
OI PHYSICAL S	TATES ICAICE MINH MOOTE	02 WASTE QUANT		DE WASTE CHARACTERISTICS CO-CO MINIS MONT			
		l matte drevium t Mesocramii	X TOXIC E SOLUBLE I HIGHLY VOLUTION				
_ 8 POWDER, FINES TE LIQUID TONS _		unknown	. B. CORROSIVE . F INFECTIOUS 1 EXPLOSIVE				
· C. SLUDGE	:	CUBIC YARGS .	unknown	O. PERSIS		MABLE X. REACTN LBLE _ L INCOUR	
.: O, OTHER	· Sa+c.rr1	NO. CF DRUMS	40	}		<u> </u>	
		NO. CF UNUSS		<u> </u>			
III. WASTE T	YPE						
CATEGORY	SUBSTANCE N	AME	01 GROSS AMOUNT	02 UNIT OF MEASURE	03 CCHMENTS		
SLU	SLUOGE		·	1	Ī		
OFA	OILY WASTE			}			
SOL	SOLVENTS			ĺ			
PSO	PESTICIOES		unknown	-	i		
occ	OTHER ORGANIC CH	HEMICALS	unknown				
IOC	INORGANIC CHEMIC			<u>'</u>	<u>'</u>		
ACD	ACIOS			!	<u> </u>		
. BAS	EASES		 	1	1		
MES	HEAVY METALS		unknown	1	1		
	OUS SUBSTANCES IS. A			!	I		
OI CATEGORY	Q2 SUBSTANCE N		03 CAS HUMBER	04 STORAGEIOS	SUSTI MELHOU	0.0000000000000000000000000000000000000	1 CA HEASURE CE
PSD		A	 	!		05 CCHCENTRATION	CONCENTRATION
	4,4' - DDD		72-43-5	Found in		0.48	ppb
MES	Aluminum	· · · · · · · · · · · · · · · · · · ·	1344-28-1		GW samples	750	ppb
MES	Cobalt		10210-68-1	Found in		8.8	ppb
MES	Copper		<u> 7440-50-8</u>	Found in	GW sample	4.5	dad
MES	Iron	·····	1309-37-1	Found in (GW sample	856	ppb
MES	Lead		7439-92-1	Found in	GW sample	1' 17.1	daa
MES	Potassium			Found in	GW sample	10,100	daa
MES	Thallium		7440-28-0	Found in (GW sample	1.1	ppb
MES	Sodium		7440-23-5	Found in (39,200	ppb
MES	Barium	•	7440-39-3	Found in	•	352,000	ppb
MES	Cadmium	<u> </u>	7440-43-9	Found in		820	ppb
MES .	Magnesium		7439-95-4	Found in S	SD sample	22,900,000	l ppb
MES	Sodium		7440-23-5	Found in S	SD sample	401,000	ppb
				GW= around	· · · · · · · · · · · · · · · · · · ·		1
				SW= surfac			
				SD= sedime			
Y. FEEDST	CXS 1500 Appendos for CAS forms	m/11	·			· · · · · · · · · · · · · · · · · · ·	
CATEGORY	O1 FEEDSTOO	X NAME	02 CAS NUMBER	CATEGORY	O1 FEEDST	CCX NAME	OZ CAS NUMBER
FOS	unknown			FOS			
FDS				FOS			
FDS				FOS			
FOS							
	S OF INFORMATION ICA	14 K T T T T T T T T T T T T T T T T T T	. 21014 /PO S. 2477079 Print La.	. (1001)			
							
Preliminary Assessment, IEPA 1991.							
Site 1	Inspection Repor	rt, BVWS 1	995.				
l							

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 2 - WASTE INFORMATION

I. IDENTIFICATION

OF STATE OF STEHULAGE

ILD 984 791 681

II WASTE STATES, QUANTITIES, AND CHARACTERISTICS							
ISICAL STATES (Check as INAL MONT) 02 WASTE GUARTIT		TY AT SITE	THE BOTH STORE CONTRACT STRAT STORE CO				
_ A SOUO	' # \$1100V	ľ	=4110 Quantum NGODANGANI)	LA TOXIC	E SOLU	פוב . ו אוכאונץ ע	CLITTE
A SOUD SE SLURRY 18 POWDER, FINES F HOUID TONS			. B. CORROSIVE . F INFECTIOUS . J EX		TICUS : 1 EXPLOSE	ν ε	
· C. SLUCGE	<u>:</u> c. cus	CUBIC YAROS _		C RADIOAN C RESERBA . D .			
E D. OTHER	<i>(Sa∞c#</i> 1)	NO. CF DRUMS _				_ M. NOT APP	
III. WASTE T		NO.CFUNUMS -		<u> </u>			
CATEGORY	SUBSTANCE N	AMF	OI GROSS ANGUNT	02 UNIT OF MEASURE	02 COMENTS		
SLU	SLUOGE		To choos Amedia	DZ GALL OF MEXSURE	03 CCA#Ciii3		
OLW	OILY WASTE			<u> </u>			
SOL	SOLVENTS		 	<u> </u>			
PSO	PESTICIDES			<u> </u>			
occ	OTHER ORGANIC CH	HEMICALS	unknown	<u> </u>	<u> </u>		
100	INORGANIC CHEMIC		 		<u> </u>		
۵۵۸	ACIOS		 	-	<u></u>		
, BAS	eases						
MES	HEAVY METALS			}			
IV. HAZARD	OUS SUBSTANCES 15A	pands for maji frequent	r card CAS Munours	. .	<u> </u>		
01 CATEGORY	02 SUBSTANCE N	AME	03 CAS NUMBER	04 STORAGEIOS	POSAL METHOD	05 CONCENTRATION	AD BRUSABLED
ME-S	Manganese		7439-96-5	Found in (GW sample	939	ppb
ME'S	Zinc		7440-66-6	Found in (37.1	ppb
MES	Beryllium		17440-41-7	Found in S		3,400	ppb
MES	Nickel		7440-02-0	Found in S		30,100	ppb
.S	Vanadium		7440-62-2	Found in S		134,000	ppb
MES	Sodium		7440-23-5	Found in S	•	17,900,000	ppb
MES	Selenium		7782-48-2	Found in S		4,500	ppb
MES	Mercury		7439-97-6	Found in S	SS sample	80	ppb
MES	Magnesium		17439-95-4	Found in S	SS sample	47,700,000	l ppb
MES	Copper	·	7440-50-8	Found in S	S sample	129,000	ppb
MES	<u>Calcium</u>			Found in S	SS sample	129,000,000	l ppb
MES	Cadmium	<u>.</u>	7440-43-9	Found in S		1,000	ppb
MES	Barium		7440-39-3	Found in S		6,930,000	ppb
MES	Arsenic		7440-38-2	Found in S		28,900	ppb
PSD	gamma-BHC (Li	ndane)	58-89-9	Found in S	S sample	4.7	ppb
occ	Benzo (a) pyre	ene '	50-32-8	Found in S	S sample	460	ppb
V. FEEDSTO	CXS ISAA ABBANDE NO CAS MAND	>/II		,			
CATEGORY	01 FEEDSTOO	X HYME	02 CAS HUMBER	CATEGORY		CCX NAME	02 CYZ HOMSEY
FOS				FOS	· · · · · · · · · · · · · · · · · · ·		
FDS				FOS			
FOS			 	FOS			
FOS				FOS			
VI. SOURCES OF INFORMATION (Can assert respectation), surrous stury and, seconds)							
Prelim	inary Assessmen	it. IFPA 10	991				
1	nspection Repor						
JILE I	nspection Kepor	c, DVWS IS	995.		-		
ľ	-						

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 2 - WASTE INFORMATION

I. IDENTIFICATION
OI STATE OF STENUMBER
ILD 984 791 681

II. WASTE STATES, QUANTITIES, AND CHARACTERISTICS							
OI PHYSICAL STATES ICAICE MINE MONT			-	JARAHD STEAW ED	ב ונחוש נוויב). בשידצותן	4071	
		ngubrudanii A astio dravianis	. A TOXIC E SCLUBLE I HIGHLY VOLATILE				
L' 8 POWCER, FINES F LIQUID TONS _			. B. CORROSIVE . F INFECTIOUS . I EXPLOSIVE				
		CUBKY CHECS	·	O. PERSIS	TENT HIGHT	ABLE _ LINCOMP	ATIBLE
£3410 .0 C.	· Sa-eer1	HO. CF GRUMS .				L M. 104 J.	المحدود
III. WASTE T	YPE	<u> </u>		<u> </u>			
CATEGORY	SUBSTANCE N	WE	OI GROSS AMOUNT	02 UNIT OF MEASURE	מו ככשיצאוב		
SLU	SLUCGE						
OLW	OILY WASTE						
SOL	SOLVENTS		 	! 	 		
PSO	PESTICIOES		 	<u> </u>	 		
occ	OTHER ORGANIC CH	IENICH S	1	1			
100	INORGANIC CHEMIC			l .	<u> </u>		
ACD	ACIDS	ACO	1	<u> </u>	<u> </u>		
	eases		 	<u> </u>	 		
, BAS MES	HEAVY METALS		 	1	<u> </u>		
	OUS SUBSTANCES		1	<u> </u>			
OI CATEGORY	M SOWLTSBUZ 20		03 CAS NUMBER	04 STCRAGE/CIS	COSH WETHOR	03 CONCENTRATION	L CH HEASURE CE
06C				!	· · · · · · · · · · · · · · · · · · ·		CONCENTRATION
		ranthene	205-99-2	Found in S		1000	
0 <u>0</u> CC	Chrysene		218-01-9	Found in S		1000	
	Benzo (a) anth	racene	56-55-3	Found in S		930	!
000	Pyrene		129-00-0	Found in S	<u>S sample</u>	2200	<u> </u>
000	Fluoranthene		206-44-0	Found in S		2300	!
000	di-n-Butylphth	<u>alate</u>	84-74-2	Found in S		1. 640	
000	Anthracene		120-02-7	Found in S	S sample	420	
000	Phenanthrene		85-01-8	Found in S		1600	
000	<u>Methylene Chlo</u>	ride	75-09-2	Found in S	S sample	19	
		•	<u> </u>			<u> </u>	
			<u> </u>	SS = surf		<u> </u>	<u> </u>
<u>.</u>		<u> </u>		ppb = par	<u>ts per bill</u>	ilon	-
				 			
						 	
						·	
V. FEEDSTO	CXS 151 - Asserted to CAS Parties	••••	<u> </u>	· · · · · · · · · · · · · · · · · · ·			
CATEGORY	Q1 FEEOSTOC	X HAME	02 CAS HUMBER	CATEGORY	OI FEEDST	CCX NAME	02 CAS HUMEER
FOS				FOS			
FOS				FOS			
FOS				FOS			
FDS				FOS			
VI. SOURCE	S OF INFORMATION ICA.	10+CPE POINTED 1, 0.9.	, 11sta lin 1, 1amon 2007 bis,	140072			
Preliminary Assessment, IEPA 1991. Sité Inspection Report, BVWS 1995.							
21 ce 11	ispection keport	t, RAM2 19	95.		•	•	
				•	•		

& EPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

I. IDENTIFICATION					
OI STATE	02 SITE !	R384Ur			
ILD					

PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS

		·····	
HAZARDOUS CONDITIONS AND INCIDENTS	22 5 2222		
01 D & GROUNDWATER CONTAMINATION 37,115	02 C OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	I POTENTIAL	I ALLEGED
Groundwater sampling indicated the p	resence of volatiles and m	etals.	
01 D B: SURFACE WATER CONTAMINATION ON POPULATION POTENTIALLY AFFECTED: unknown	02 C ORSERVED (DATE:) 04 NARRATIVE DESCRIPTION	E POTENTIAL	C ALLEGED
The presence of inorganics was indic from Marley Creek and a sediment sam			ples
01 C. CONTAMINATION OF AIR 03 POPULATION POTENTIALLY AFFECTED: 14,839			C ALLEGED
No documented air releases are known the presence of volatiles, semivolat ground surface creates the potential	iles, pesticides and metal	s at or near	
01 D. D. FIRE:EXPLOSIVE CONDITIONS 03 POPULATION POTENTIALLY AFFECTED:UNknown	02 C OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	_ POTENTIAL	□ ALLEGEO
In the fall of 1989, samples were conignitable. Drums were removed from		site and fou	nd to be
01 () E. CIRECT CONTACT 03 POPULATION POTENTIALLY AFFECTED: UNKNOWN	02 C OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	☐ POTENTIAL	Z ALLEGED
Seven soil samples collected from th semivolatiles, pesticides, and metal with all site visitors.	e site indicated the prese		
01 © F. CONTAMINATION OF SOIL 03 AREA POTENTIALLY AFFECTED: 10	02 C OBSERVED IDATE. 1	_ POTENTIAL	_ ALLEGED
Seven soil samples collected from th semivolatiles, pesticides, and metal	e site indicated the prese	nce of volat	iles,
01 C G. DRINKING WATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED: 37,115	02 G OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	☐ POTENTIAL	_ ALLEGED
Groundwater sampling of the six moni metals.	toring wells onsite indica	ted the pres	ence of
01 C H. WORKER EXPOSURE/INJURY 03 WORKERS POTENTIALLY AFFECTED: 0	02 D OBSERVED (DATE:] 04 NARRATIVE DESCRIPTION	G POTENTIAL	J ALLEGED
No workers are onsite. Site is curr	ently inactive.		
01 D 1, POPULATION EXPOSURE/INJURY 03 POPULATION POTENTIALLY AFFECTED: UNKNOWN	02 G OBSERVED (DATE:	S POTENTIAL	C ALLEGED
Seven soil samples collected from th volatiles, pesticides, and metals. all site visitors.	e site indicated the prese	nce of volat for direct	iles, semi- contact with
	<u>-</u>		

SEPA

PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS

L IDENTIFICATION
OI STATE OF STE NAMES
ILD 984 791 681

II. HAZARDOUS CONDITIONS AND INCIDENTS (COMPAND)		
01 CJ J. DAMAGE TO FLORA 02 CG OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	C POTENTIAL	CI ALLEGED
An onsite sediment sample taken in a wetland indicated the prese	ence of met	als.
01 C K. DAMAGE TO FAUNA . 02 C OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION (PECAGO AGRICUL)	G POTENTIAL	CI ALLEGED
None known or observed.		
01 C L. CONTAMINATION OF FOOD CHAIN 02 C OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	E POTENTIAL	C ALLEGED
None known or observed.		
01 [] M. UNSTABLE CONTAINMENT OF WASTES 02 C OBSERVED (DATE: 1989)	I POTENTIAL	_ ALLEGED
103 POPULATION POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION		
Leaking drums at the site resulted in soil contaminantion.		
01 C N. DAMAGE TO OFFSITE PROPERTY 02 C CBSERVED (DATE:) 04 NARRATIVE CESCRIPTION	C POTENTIAL	C ALEGED
None known or observed.		
01 C O. CONTAMINATION OF SEWERS, STORM DRAINS, WWTPs 02 C OBSERVED (DATE:) 04 NARRATIVE CESCRIPTION	O POTENTIAL	C ALEGED
None known or observed.		
01 C.P. ILLEGAL/UNAUTHORIZED DUMPING 02 C. OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	T POTENTIAL	□ ALLEGED
The site is a vacant lot where unauthorized dumping of 55-gallon	drums occu	rred.
05 DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR ALLEGED HAZARDS		
	•	
III. TOTAL POPULATION POTENTIALLY AFFECTED:		
IV. COMMENTS		
Leaking drums at the site were left by an unknown party. The dru Some contaminated soil has been excavated and monitoring wells we	ums have be ere install	en removed. ed.
V. SOURCES OF INFORMATION (Car species references), e.g., state first, sample program, records		
Preliminary Assessment, IEPA 1991.		
Site inspection Report, BVWS 1995.		

SEPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION PART 4-PERMIT AND DESCRIPTIVE INFORMATION

I. IDENTIFICATION				
OI STATE	02 SITE HUMBER			
וחוז	984 791 681			

II. PERMIT INFORMATION						
, O1 TYPE OF PERMIT ISSUED	02 PERMIT NUMBER	03 DATE I	SSUED I	04 EXPIRATION DATE	05.001010100	
(Check M Inel Mory)				OF EXPINATION DATE	03 CCMMENTS	
C A. HPOES		<u> </u>				
C 8. UIC						· · · · · · · · · · · · · · · · · · ·
□ C. AIR						
CD. RCRA						
CE. ACRA INTERIM STATUS						
C.F. SPCCPLAN		1				
C G. STATE		 				
GH. LOCAL SOCON		 				
CI. OTHER SONOTI		 				
& J. NONE		 				· ·
III. SITE DESCRIPTION		1			<u> </u>	
01 STORAGE:DISPOSAL (Check M PM 1007)	OZ JINU CO THUOMA SO	NE LEWES	1 0			
į	OZ AMOGINI OZ ONIL OP	MEASURE	04 TR	EATMENT ICAGE MINH	Pori	05 OTHER
C A. SURFACE IMPOUNDMENT C B. PILES			[C A.1	NCENERATION		~
C C. DRUMS, ABOVE GROUND			,	UNDERGROUND INJE	_	C A. BUILDINGS ON SITE
D D. TANK, ABOVE GROUND			1	CHEMICALIPHYSICA	L	
C E. TANK, BELOW GROUND				BIOLOGICAL WASTE OIL PROCESS		none
C) F. LANDFILL				SOLVENT RECOVERY		08 AREA OF SITE
C G. LANOFARM				OTHER RECYCUNG		10
& H. OPEN DUMP	unknown			OTHER <u>SOIL EX</u>	<u>cavation</u>	70411
CI I. OTHER				(504	G11	
07 COMMENTS						<u> </u>
On August 20, 1990, t IEPA. The request re Village of Orland Parl	3011. - U 1700 18010	יווי ד ד הוויי	n waa	**************************************	-LCC:	equest by the ials of the
IV. CONTAINMENT				· .		
OI CONTAINMENT OF WASTES (Checa one)					-	
☐ A. ADEQUATE, SECURE	. C B. MODERATE	C C. 18	AADEQU	ATE, POOR	C D. INSECUA	E. UNSOUND, DAYGEROUS
02 DESCRIPTION OF GRUMS, DIXING, LINERS.					· · · · · · · · · · · · · · · · · · ·	
The drums have been removed from the site and soil has been excavated. A six foot chain link fence with barbed wire secures the area where the monitoring wells are located.						
V. ACCESSIBILITY		 -				
01 WASTE EASILY ACCESSIBLE: C YE	ON & C			<u>-</u>	<u> </u>	
VI. SOURCES OF INFORMATION (Care	BACK PRINTERS A B SEAL LOS					
	·		=111			
Preliminary Assessment Site Inspection Report	, IEPA 1991. , BVWS 1995.					

POTENTIAL HAZARDOUS WASTE SITE

- 1	ו. וDEאז			
1	OI STATE	984	791	681

SEPA	SITE INSPECTION REPORT PART 5 - WATER, DEMOGRAPHIC, AND ENVIRONMENTAL DATA				ILD	984 791 681	
II. DRINKING WATER SUPPLY							
OT TYPE OF DRINKING SUPPLY (Check as approxima)		02 STATUS				03	CISTANCE TO SITE
SURFACE	WELL	ENDANGERE	D AFFECT	ED X	CHITCHED		
COMMUNITY A. [8. Ø	٨. 🖸	8. 🔾		c. 23	٨.	(mi)
NON-COMMUNITY C. []	0. 🛭	0. 🗆	ε. Ο		F. 🗆	8.	0.25(mu)
III. GROUNDWATER							·
01 GROUNDWATER USE IN VICTNITY ICHOR	one)						
C C. COMMERCIAL INCUSTRIAL IRRIGATION C D, NOT USED, UNUSEABLE [Commercial industrial irrigation] COMMERCIAL INDUSTRIAL IRRIGATION [No other sources eventure]							
02 POPULATION SERVED BY GROUND WA	TER 37,115	_	03 DISTANCE T	C NEARES	T CANKING WATER	WELL	2 (mx)
04 DEPTH TO GROUNOWATER	05 DIRECTION OF GRO	WOJA RETAWONU	06 DEPTH TO A		OF POTENTIAL YIEL	م	08 SOLE SOURCE ACUIFER
approx. 12 (n)	s-sw	·	of concer approx.		OF AQUIFER	Ja 1	CI YES CI NO
09 DESCRIPTION OF WELLS (INCOMP MAN)				==_('''	1	_ (gpa)	
		V.:	T		.:		
10 RECHARGE AREA			11 DISCHARGE				
D YES COMMENTS			G YES C	COMMEN	13		
L.NO							
IV. SURFACE WATER							
01 SURFACE WATER USE (Chee on) 2 A. RESERVOIR, RECREATION DRINKING WATER SOURCE		ON, ECONOMICALLY NT RESOURCES	r © c. co	MMERCI	AL, INOUSTRIAL	'.	D. NOT CURRENTLY USED
02 AFFECTED/POTENTIALLY AFFECTED E	RATAW TO ZAIDOS						
NAME:					AFFECTE	כ	DISTANCE TO SITE
Tributary to M	arley Crook				_		0.00 ()
Marley Creek	ulley Creek					-	0.00 (50)
Hickory Creek						-	6.0 (m)
V. DEMOGRAPHIC AND PROPERTY INFORMATION							
OI TOTAL POPULATION WITHIN				0:	2 DISTANCE TO NEAR	REST POP	PULATION
ONE (1) MILES OF SITE TWO (2) MILES OF SITE THREE (3) M			(3) MILES OF SI 8,598 MO. OF PERSONS				(mi)
03 NUMBER OF BUILDINGS WITHIN TWO	2) MILES OF SITE		04 DISTANCE	SALSH OT	ST.OFF-SITE BUILDIN	K 3	
man	<u>y</u>				0.0	2	_(mi)
05 POPULATION WITHIN VICINITY OF SITE	(Provide narrante description	of nature of population with	n reney of Me. e.g.,	N/H. 74090.	gensely populated urban	a/44)	
Rural area, but con	struction und	lergoing fo	r new sul	bdivis	sions.		
1							

SEPA

DISTANCE TO:

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

I. IDENTIFICATION				
OI STATE	02 SITE	WWBER		
TID				

AGRICULTURAL LANGS

_ (mi) D. ___

AG LLHD

PRIME AG LAND

PART 5 - WATER, DEMOGRAPHIC, AND ENVIRONMENTAL DATA VI. ENVIRONMENTAL INFORMATION O1 PERMEABILITY OF UNSATURATED ZONE (CARCE MO) 02 PERMEABILITY OF BEDROCK (Check one) ☐ A. IMPERMEABLE

(Less than 10⁻⁶ covinci ▼ B. RELATIVELY IMPERMEABLE □ C. RELATIVELY PERMEABLE □ O. VERY PERMEABLE 110⁻⁴ - 10⁻⁴ consect | 10⁻⁴ - 10⁻⁴ consect | 10⁻⁴ - 10⁻⁴ consect | 10⁻⁴ 04 DEPTH OF CONTAMINATED SOIL ZONE 03 DEPTH TO BEDROCK 05 SOIL pm approx. 50 7.5 OT ONE YEAR 24 HOUR RAINFALL OS HET PRECIPITATION 08 SLOPE DIRECTION OF SITE SLOPE, TERRAIN AVERAGE SLOPE SITE SLOPE 0 - 2flat (in) 09 FLOOD POTENTIAL 10 C SITE IS ON BARRIER ISLAND, COASTAL HIGH HAZARD AREA, RIVERINE FLOODWAY SITE IS IN 100 ___ YEAR FLOOOPLAIN 11 DISTANCE TO WETLANDS IS ACTO MARRIAGO 12 DISTANCE TO CRITICAL HABITATION ansurpered special 2.75 (m) ESTUARINE OTHER 0.50 0.00 (mi) ENDANGERED SPECIES: red-shouldered hawk 13 LAHO USE IN VICINITY

RESIDENTIAL AREAS; NATIONAL/STATE PARKS.

FORESTS, OR WILDLIFE RESERVES

2.75 (mi)

14 DESCRIPTION OF SITE IN RELATION TO SURROUNDING TOPOGRAPHY

COMMERCIALINDUSTRIAL

VII. SOURCES OF INFORMATION (CAR EDUCATE PRIMARES), R. R., SING POLI, EDWOOD STREET, PORONIE

Preliminary Assessment, IEPA 1991.

Site Inspection Report, BVWS 1995.

~	

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

	I. IDENTIFICATION			
6	1 STATE	02 SITE NUMBER		
1	II D	984 701 681		

YEFA	Р		AND FIELD INFORMATION	ILD 9	84 791 681
IL SAMPLES TAXEN					
SAMPLE TYPE	01 MUMBER OF SAMPLES TAKEN	02 SAMPLES SENT			OS ESTIMATEO DATE
GROUNDWATER *	·Seven	Inorganic: Organic:	SVL Analytical Laboratory, Kell Keystone Laboratory, Houston,	ogg, Indiana Texas	March 2, 1994
SURFACE WATER	Four	Inorganic: Organic:	ITMO Laboratory, Earth City Encotech Laboratory, Ann An	, Missouri bor, Michigan	February 14, 1994
WASTE	·				•
AR			······	-	
RUNOFF					
SPILL					
SOIL	Seven	Inorganic: Organic:	ITMO Laboratory, Earth City, Encotech Laboratory, Ann Art	Missouri or, Michigan	March 28, 1994
VEGETATION					
OTHER Sediment	Four	Inorganic: Organic:	SVL Analytical Laboratory, Kel Keystone Laboratory, Houston,	logg, Indiana Texas	February 27, 19
III. FIELD MEASUREM	ents taken		<u> </u>		
DI TYPE	02 COMMENTS				·
•		ž.		,	
·		•			
		•			
IV. PHOTOGRAPHS A	ND MAPS		USEPA		
01 TYPE GROUND	C AERIAL	02 IN CUSTOOY OF	-Martin of propertition or marrow		
T YES	LOCATION OF MAPS				
V. OTHER FIELD DAT	A COLLECTED (Provide nations of	ne tecubulout			
					•
•	•		,		
•				4	
:					
			•		
VI. SOURCES OF INF	ORMATION ICAN SANCER PROPERTY.	s, e.g., State Mes, Sarrore ar			
Site Inspect	ion Report, BVWS	1995.	•		
			-		

SEPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

I. IDENTI	FICATI	ОН	
DISTATE	02 SITE	HUMBER	
חוד	984	791	68

TELL 7 (PART 7 - OY	YNER INFORMATION	CIED 190	4 /91 001
CURRENT OWNER(S)			PARENT COMPANY #	9	
NAME		02 D+8 NUMBER	CS NAME	C	10+8 HUMBER
Prairie Material Sales,	THC.	Ta i a la l			_ ,
7601 W. 79th Street		04 SXC COOE	10 STREET ADORESS (P. O. Box. RFO F	•IC)	11 SC CCC€
sary	CO STATE	07 ZIP CODE	12 CITY	13 STATE 11	ZIP CCOE
Bridgeview	IL	60455			
I NAME		02 D+8 HUMBER	OS NAME	, o	0+8 ж . ы 8€R
DI STREET ADORESS (P.O. Bos, AFD F, etc.)		04 SVC CODE	10 STREET ADDRESS IP 0 July NO P.	·. etc.]	11 SC COOE
05 CITY	Od STATE	07 ZIP CODE	12 CITY	13 STATE 1	} 4 ZIP COO€
01 NAME		02 D+8 HUMBER	08 NAME		9 0+8 MJ448ER
03 STREET ADORESS (P.O. dot. AFD 1, src.)		04 SIC CODE	10 STREET ADORESS IP O DOLARO), e16.1	115℃ CC0€
	104 67175	loz yn coos		la exercis	130,000
05 CITY	09 21 71 5	07 ZIP CODE	12 CITY	13 STATE	4 <i>D</i> COC
O1 NAME		02 0+8 NUMBER	OS NAME		90+8 MUMBER
03 STREET ADORESS (F O. Bas, AFD F. etc.)		04 SX CODE	10 STREET ADDRESS (A.O. Soc. A/O A	1 erc.;	11 SC CCC€
05 CITY	OB STATE	1 07 ZIP COO€	12 CITY	13 STATE	14 ZIP CCC€
III. PREVIOUS OWNER(S) ILLE POUL POCENTA	<u></u>	<u> </u>	IV. REALTY OWNER(S) IF DOOR	caon; hal mostime and fratt	
S.M. Shively		02 D+B NUMBER	01 NAME		02 D+8 NUMBER
03 STREET ADCRESS IF O Bos, RFO F. NC.)		04 SIC CODE	03 STREET ADORESS (P. O. Bos. AFO	· #. e(c.)	04 SXC CCCEE
OS CITY	COSTATE	07 ZIP CODE	05 CITY	GO STATE	07 ZP CCO€
O1 NAME	•	02 0+8 NUMBER	OI NAME		02 O+8 MJ48ER
03 STREET ADCRESS IF 0 Box, RFO F. HE.I		04 SXC CODE	03 STREET ADDRESS IP.O Dos. A/O	₹, e16.1	04 SC CCC€
05 CITY	06 STATE	07 ZIP CODE	OS CITY	CO STATE	
01 NAME		02 D+B NUMBER	OI NAME		02 D+8 NUMBER
OJ STREET ADORESS (P. O. Bos. AFO F. HE.)		04 SXC COC 5	03 STREET ADORESS (P.O. Jan. APD.	/, нс.I	04 SIC CCO€
05CITY	O STATE	07 ZIP COO':	05 CITY	06 STATE	07 ZIP COO€
V. SOURCES OF INFORMATION (C.)		. 0.0 1(a)0 fbms sammer	- ·		
			,		
Preliminary Assessment,	IEPA 1	.991.		·	
Site Inspection Report,	BVWS 1	995.			
			-		

ŞEPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

I. IDENTIFICATION

01 STATE | 02 SITE NUMBER

II D | 984 791 681

PART 8- OPER			PART 8 - OPERA	TOR INFORMATION	LILD !	984 791 681
II. CURRENT OPERATO	R (Provos d atteress from	0=~01		OPERATOR'S PARENT COMPANY III ADDRESONS		
OI NAME			02 0+8 NUMBER	10 NAME		110+B NUMBER
03 STREET ADORESS (P.O. Bo)	03 STREET ADORESS IP O. Bos. RFD #, erc.)			12 STREET ADDRESS (P.O. Bos. AFO.)	nc.)	13 SXC CCCE
05 CITY		OB STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE
	<u></u>			<u> </u>		
08 YEARS OF OPERATION	09 NAME OF OWNER			-		_ _
III. PREVIOUS OPERAT	OR(S) (Let most recent to	si; previde err	ry d atterwa from owner;	PREVIOUS OPERATORS' PAR	RENT COMPANIES (#	100*C80**)
01 NAME	·		02 D+8 NUMBER	10 NAME		11 0+8 NUMBER
03 STREET ADORESS (P.O. 80.	1, RFO F, erc.)		04 SIC CODE	12 STREET AOORESS (P.O. Bos. AFO F.	•1C.)	13 SIC CCD€
05 CITY		GO STATE	07 ZIP COOE	14 017	15 STATE	16 ZIP CODE
. `						
08 YEARS OF OPERATION	OP NAME OF OWNER C	HT DAIRUK	S PERXOO .			
01 HAME			02 0+8 NUMBER	10 NAME		110+8 NUMBER
03 STREET ADORESS (P.O. Box	C AFO F. erc.)		04 SC CODE	12 STREET ADDRESS (P.O. Bos, P/O F.	etc.)	13 S/C COOE
05 CITY		OS STATE	07 ZIP COO€	14 CITY	15 STATE	16 ZIP COO€
08 YEARS OF OPERATION	09 NAME OF OWNER	HT DWRUC	I S PERIOO		1.	1,
01 NAME			02 D+8 NUMBER	10 NAME		11 0+8 NUMBER
03 STREET ADDRESS (P. O. Bo.	z, RFO F. elc.)		04 SKC CODE	12 STREET ADDRESS IP O 801, AFO	115)	13 SIC CODE
05 CITY		06 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CCCE
08 YEARS OF OPERATION	09 NAME OF OWNER	ENRANG TH	IS PERIOD			1
IV. SOURCES OF INFO	RMATION (Cr. 2004)	e polonovene.	e.g., Slate lees, sample aren	un, reports)	,	
· · ·		•		<u>.</u> * * * * * * * * * * * * * * * * * * *		
		٠				

\$EPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 9- GENERATOR/TRANSPORTER INFORMATION

I. IDENTIFICATION			
OI STATE	02 SITE	HUMBER	1
חוז	984	791	681

	rAni s		ANSPORTER INFORMATION		
II. ON-SITE GENERATOR					
THAME		02 0+8 NUMBER			
Unknown		· · · · · · · · · · · · · · · · · · ·			•
03 STREET ADORESS IP O. 802, APO P. 416.1		04 SXC CC0€			
05 CITY	G6 STATE	O7 ZIP CCOE			
III. OFF-SITE GENERATOR(S)	_'				
OI NAME		02 D+8 NUMBER	O NAME	0	2 O+8 NUMBER
03 STREET ADDRESS IP.Q. Bos. MOP. IN.		04 SKC COOE	03 STREET ADCRESS (P.O. Bos. AFO F. HC.)		04 SAC COCE
OS CITY	Od STATE	07 ZIP CO0€	os CITY	OS STATE	D7 ZIP COC€
01 NAME	. !	02 0+8 NUMBER	01 NAME		02 D+3 hUMBEA
03 STREET ACCRESS (P.O. Box, RFO P. etc.)	·	04 SAC CODE	03 STREET ADDRESS (P. O. Bos. AFD F. sic.)		04 SC CC05
05 CITY	06 STATE	E 07 ZIP COOE	OS CITY	OB STATE	07 ZP CCC€
IV. TRANSPORTER(S)	!				
OT NAME		02 D+B NUMBER	01 NAME		02 0+3 NUMBER
OJ STREET ADORESS (A.O. Soi, AAO A. AR.)		04 SXC COD€	OJ STREET ADORESS (P. O. Bos. PFO P. etc.)		04 SXC CODE
05 CITY	O6 STAT	E 07 ZIP CODE	05 CITY	GO STATE	07 ZP CCO€
01 NAME		02 O+ B NUMBER	O1 NAME		02 0+3 HUMBER
03 STREET ADDRESS IP 0. Box, AFD F. etc.)		04 SXC CODE	OJ STREET ADDRESS IP O 801, 8FO F. 816.1		04 SC CCCE
05 CITY	C6 STAT	TE 07 ZIP CODE	05 CITY	GO STATE	O7 ZP COCE
V. SOURCES OF INFORMATION (C40 100		s, e.g., siste ises, sarrow arany	ы, гъротт)	!	!
Preliminary Assessment,	IEPA	1991.	*	•	
Site Inspection Report,	BVWS	1995.	water in		
	•	•	•		

ŞEPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES

	I. IDENTIFICATION				
OI STATE	OZ SITE !	REGER			
מוז	984	791	681		

	PART 10 - PAST RESPONSE ACTIVITIES	ILD 984 791 681
AST RESPONSE ACTIVITIES (Communication)		
01 C.R. BARRIER WALLS CONSTRUCTED 04 DESCRIPTION	G2 DATE	03 AGENCY
01 C S. CAPPING/COVERING 04 DESCRIPTION	02 DATE	03 AGENCY
01 C T. BULK TANKAGE REPAIRED 04 DESCRIPTION	02 DATE	03 AGENCY
01 C U. GROUT CURTAIN CONSTRUCTED 04 DESCRIPTION	02 DATE	03 AGENCY
01 Q V. BOTTOM SEALED 04 DESCRIPTION	02 DATE	03 AGENCY
01 TW. GAS CONTROL 04 DESCRIPTION	02 DATE	03 AGENCY
01 Ü X, FIRE CONTROL 04 DESCRIPTION		03 AGENCY
01 G Y, LEACHATE TREATMENT 04 DESCRIPTION	02 OATE	03 AGENCY
01 C Z. AREA EVACUATED 04 DESCRIPTION	02 DATE	03 AGENCY
01 C 1. ACCESS TO SITE RESTRICTED 04 DESCRIPTION (foot chain link force are	02 DATE	03 AGENCY
01 C 2. FOPULATION RELOCATED 04 DESCRIPTION	round a one acre area.	03 AGENCY
01 C 3, OTHER REMEDIAL ACTIVITIES 04 DESCRIPTION	O2 DATE	03 AGENCY
		;
		·
. SOURCES OF INFORMATION (CA. SOCCE	plorences, e.g., Slate live, Samore analysis, legons)	

Site Inspection Report, BVWS 1995.

\$EPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES

I. IDENTIFICATION
OI STATE CO STE MANGER
ILD 984 791 681

PARI 10-P	AST RESPONSE ACTIVITIE	5
T RESPONSE ACTIVITIES		
01 () A. WATER SUPPLY CLOSED 04 DESCRIPTION	02 DATE	O3 AGENCY
01 CI B. TEMPORARY WATER SUPPLY PROVICED 04 DESCRIPTION	02 DATE	O3 AGENCY
01 C. PERMANENT WATER SUPPLY PROVIDED 04 DESCRIPTION	02 DATE	OJ AGENCY
01 C O. SPILLED MATERUL REMOVED 04 DESCRIPTION	02 OATE	03 YCENCA
O1 & E. CONTAMINATED SOIL REMOVED O4 DESCRIPTION pproximately 40 cubic yards of impact mpacted area and disposed of at CID L	ted soil was excav	
01 ØF. WASTE REPACKAGED 04 DESCRIPTION 07 OF TWO Grums were overpacked and de	02 DATE 10-14-89	nent One, Houston, Texas.
01 C G, WASTE DISPOSED ELSEWHERE 04 DESCRIPTION		03 AGENCY
OF CER, ON SITE BURIAL	02 OATE	03 AGENCY
04 DESCRIPTION		
01 O I, IN SITU CHEMICAL TREATMENT 04 DESCRIPTION	O2 DATE	O3 AGENCY
01 C. J. IN SITU EOLOGICAL TREATMENT 04 DESCRIPTION	02 DATE	03 AGENCY
01 G K. IN SITU PHYSICAL TREATMENT 04 DESCRIPTION	02 DATE	03 AGENCY
O1 G L. ENCAPSULATION O4 DESCRIPTION	O2 DATE	O3 AGENCY
01 G M. EMERGENCY WASTE TREATMENT 04 DESCRIPTION	02 DATE	O3 AGENCY
01 D N. CUTOFF WALLS 04 DESCRIPTION	O2 DATE	O3 AGENCY
01 0. EMERGENCY DIKING/SURFACE WATER DIVERSION 04 DESCRIPTION	O2 DATE	03 AGENCY
01 D P. CUTOFF TRENCHES/SUMP 04 DESCRIPTION	02 DATE	03 AGENCY
01 CI O. SUBSURFACE CUTOFF WALL	02 DATE	03 AGENCY

SEPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

I. IOEN			
01 57472	02 STE A	منخذة	
ILD	984	791	681

VLIA	PART 10 - PAST RESPONSE ACTIVITIES	ILD 984 791 681
II PAST RESPONSE ACTIVITIES (Comme)		
01 C R. EARPIER WALLS CONSTRUCTED 04 DESCRIPTION	02 CATE	03 AGENCY
01 E S. CAPPING/COVERING 04 DESCRIPTION	02 DATE	03 AGEYCY
01 C T, BULK TANKAGE REPAIRED 04 DESCRIPTION	02 DATE	03 AGENCY
01 C U. GROUT CURTAIN CONSTRUCTED 04 DESCRIPTION	02 DATE	03 AGENCY
01 C V. BOTTOM SEALED 04 DESCRIPTION	02 DATE	03 AGENCY
01 C YY, GAS CONTROL 04 DESCRIPTION	02 DATE	03 AGENCY
01 C X, FIRE CONTROL 04 DESCRIPTION		03 AGENCY
01 G Y, LEACHATE TREATMENT 04 DESCRIPTION	OZ DATE	G3 AGENCY
01 C Z, AREA EVACUATED 04 DESCRIPTION	02 DATE	03 AGENCY
01 C 1. ACCESS TO SITE RESTRICTED 04 DESCRIPTION	02 DATE	
01 C 2. POPULATION RELOCATED 04 DESCRIPTION	02 OATE	03 AGENCY
01 C 3, OTHER REMEDIAL ACTIVITIES 04 DESCRIPTION	02 DATE	03 AGENCY
		į.
·		
		·
III. SOURCES OF INFORMATION (CA. LONGE CO.	(e/enCes, 8 g., 3(s)) (ms, senion energia, reports)	

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 11 - ENFORCEMENT INFORMATION

ILIDENTIFICATION

01 STATE | 02 SITE MULAGE

ILD 984 791 681

II. ENFORCEMENT INFORMATION

PAST REGULATORY/ENFORCEMENT ACTION E YES ENO

02 DESCRIPTION OF FEDERAL STATE, LOCAL REGULATORY/ENFORCEMENT ACTION

On September 27, 1991, a site reconnaissance inspection was conducted. The site is undeveloped and not paved. No samples were collected. Prairie Material Sales, Inc., had no prior knowledge of the 42 illegally dumped, 55-gallon drums of unknown content being located on the property. Later, the drum contents were identified as being glues, nail polish, ignitable oils, and sludges. Prairie Material Sales, Inc. does not use or generate any of those substances in the daily operation of their concrete manufacturing business. A low priority was recommended for the Drum Disposal Area site. Current environmental activity at the Drum Disposal Area site is limited to this SSI.

III, SOURCES OF INFORMATION (CAN ADDECT TO STATE OF A. ALMO POLA, ANTON MOYER, TOODS)

Preliminary Assessment, IEPA 1991.

Appendix C

Target Compound List and Target Analyte List

Drum Disposal Area

Target Compound List

Volatiles

Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride

Acetone

Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane

1,2-Dichloroethene (total)

Chloroform

1,2-Dichloroethane

2-Butanone

1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene

Trichloroethene

Dibromochloromethane 1,1,2-Trichloroethane

Benzene

trans-1,3-Dichloropropane

Bromoform

4-Methyl-2-pentanone

2-Hexanone Tetrachloroethene

Toluene

1,1,2,2-Tetrachloroethane

Chlorobenzene Ethyl benzene

Styrene

Xylenes (total)

Source:

Target Compound List for water and soil with low or medium levels of volatile and semivolatile organic contaminants, as shown in the Quality Assurance Project Plan for Region V Superfund Site Assessment Program, ARCS V Contractor, September 27, 1991.

Target Compound List (Continued)

Semivolatiles

Phenol Acenaphthene
bis(2-Chloroethyl) ether 2,4-Dinitrophenol
2-Chlorophenol 4-Nitrophenol
1,3-Dichlorobenzene Dibenzofuran
1,4-Dichlorobenzene 2,4-Dinitrotoluene
1,2-Dichlorobenzene Diethylphthalate

1,2-Dichlorobenzene Diethylphthalate
2-Methylphenol 4-Chlorphenyl ether

2,2-oxybis-(1-Chloropropane) Fluroene

4-Methylphenol

4-Methylphenol 4-Nitroaniline N-Nitroso-di-n-dipropylamine 4,6-Dinitro-2-methylphenol

Hexachloroethane
Nitrobenzene

N-Nitrosodiphenylamine
4-Bromophenyl-phenyl ether

Nitrobenzene 4-Bromophenyl-phenyl ether Isophorone Hexachlorobenzene 2-Nitrophenol Pentachlorophenol

2,4-Dimethylphenol Phenanthrenel
bis(2-Chloroethoxy) methane Anthracene

2,4-Dichlorophenol Carbazole

1,2,4-TrichlorobenzeneDi-n-butylphthalateNaphthaleneFluoranthene4-ChloroanilinePyrene

Hexachlorobutadiene

4-Chloro-3-methylhenol

2-Methylnaphthalene

Butyl benzyl phthalate

3,3-Dichlorbenzidine

Benzo(a)anthracene

2-Methylnaphthalene Benzo(a)anthracene Hexachlorocyclopentadiene Chrysene

2,4,6-Trichlorophenol bis(2-Ethylhexyl)phthalate

2,4,5-TrichlorophenolDi-n-Octyphthalate2-ChloronephthaleneBenzo(b)fluoranthene2-NitroanilineBenzo(k)fluoranthene

Dimethylphthalate Benzp(a)pyrene

Acenaphthylene Indeno(1,2,3-cd)pyrene 2,6-Dinitrotoluene Dibenzo(a,h)anthracene

3-Nitroaniline Benzo(g,h,i)perylene

Previously known by the name of bis(2-chlorousipropyl) ether.

Source: Target Compound List for water and soil with low or medium levels of

volatile and semivolatile organic contaminants, as shown in the Quality Assurance Project Plan for Region V Superfund Site Assessment

Program, ARCS V Contractor, September 27, 1991.

Target Compound List (Continued)

Pesticide/PCB

4.4-DDT alpha-BHC Methoxychlor beta-BHC delta-BHC Endrin ketone Endrin aldehyde gamma-BHC (Lindane) Heptachlor alpha-chlordane Aldrin gamma-chlordane Heptachlor epoxide Toxaphene Endosulfan I Aroclor-1016 Dieldrin Aroclor-1221 4,4-DDE Aroclor-1232 Endrin Aroclor-1242 Endosulfan II Aroclor-1248 4,4-DDD Aroclor-1254 Endosulfan sulfate Aroclor-1260

Source:

Target Compound List for water and soil containing less than high concentrations of pesticides/aroclors, as shown in the Quality Assurance Project Plan for Region V Superfund Site Assessment Program, ARCS V Contractor, September 27, 1991.

Target Analyte List

Aluminum Magnesium Antimony Manganese Arsenic Mercury Barium Nickel Beryllium Potassium Cadmium Selenium Calcium Silver Chromium Sodium Cobalt Thallium Copper Vanadium Iron Zinc Lead Cyanide

Source:

Target Analyte List in the Quality Assurance Project Plan for Region V Superfund Site Assessment Program, ARCS V Contractor, September 27, 1991.

Appendix D

Analytical Results

Drum Disposal Area

Appendix D

Contents

Data	Qualifiers	. D-3
Analy	ytical Results	
•	Groundwater Samples	
	Volatile Organic Analysis for Groundwater	. D-5
	Semivolatile Organic Analysis for Groundwater	
	Pesticide/PCB Analysis for Groundwater	. D-8
	Inorganic Analysis for Groundwater	. D -9
	Tentatively Identified Compounds	
	Semivolatile Organic Analysis for Groundwater	D-10
	Surface Soil Samples	
	Volatile Organic Analysis for Surface Soil	D-12
	Semivolatile Organic Analysis for Surface Soil	D-13
	Pesticide/PCB Analysis for Surface Soil	
	Inorganic Analysis for Surface Soil	D-16
	Tentatively Identified Compounds	
	Volatile Organic Analysis for Surface Soil	D-17
	Semivolatile Organic Analysis for Surface Soil	D-18
	Surface Water	
	Volatile Organic Analysis for Surface Water	D-22
	Semivolatile Organic Analysis for Surface Water	D-23
	Pesticide/PCB Analysis for Surface Water	D-25
	Inorganic Analysis for Surface Water	D-26
	Tentatively Identified Compounds	
	Semivolatile Organic Analysis for Surface Water	D-27
	Sediment Samples	
	Volatile Organic Analysis for Sediment Samples	
	Semivolatile Organic Analysis for Sediment	
	Pesticide/PCB Analysis for Sediment	
	Inorganic Analysis for Sediment	D-32
	Tentatively Identified Compounds	_
	Semivolatile Organic Analysis for Sediment	D-33

Data Qualifiers								
Analysis	lysis Qualifier Description							
	U	Compound was analyzed for but not detected. The associated numerical value is the sample quantitation limit.						
	A	Indicates that a TIC is a suspected aldol-condensation product.						
	N	Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds where the identification is based on a mass spectral library search.						
Organic	D	This flag identifies all compounds identified in an analysis at a secondary dilution factor. The flag alerts data users that discrepancies between concentrations reported may be due to dilution of the sample or extract.						
	J	An estimated value. This flag is used either when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed or when the mass spectral data indicate the presence of a compound that meets the identification criteria, but the result is less than the sample quantitation limit and greater than zero.						
	В	Reported value is less than the contract required detection limit (CRDL), but greater than the instrument detection limit (IDL).						
	P	Greater than twenty-five percent difference for detected concentrations.						

Data Qualifiers						
Analysis	Qualifier	Description				
	U	Compound was analyzed for but not detected. The associated numerical value is the sample quantitation limit.				
	J	An estimated value.				
	S	The reported value was determined by the Method of Standard Additions (MSA).				
Inorganic	В	Reported value is less than the CRDL, but greater than the instrument detection limit (IDL).				
	Е	The reported value is estimated because of the presence of interference.				
	N	Spiked sample recovery is not within control limits.				
	W	Post-digestion spike for furnace AA analysis is out of control limits; sample absorbance is less than fifty percent of spike absorbance.				

Table D-1											
Volatile Organic Analysis for Groundwater Samples											
Drum Disposal Area											
	Sample Location and Number										
		T		Concentrations							
	GW01	GW02	GW03	GW06**	GW05	GW04**					
	EWW99	EWW98	EWW97	EWW93	EWW94	EWW95					
Volatile	Glacial	Glacial	Glacial	Glacial	Glacial Drift/	Glacial Drift/					
Compound	Drift	Drift	Drift	<u>Drift</u>	Silurian dolomite	Silurian dolomite					
Chloromethane	10 U	10 U	10 U	10 U	10 U	10 U					
Bromomethane	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ					
Vinyl Chloride	10 U	10 U	10 U	10 U	10 U	10 U					
Chloroethane	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ					
Methylene Chloride	10 U	10 U	10 U	10 U	10 U	10 U					
Acetone	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ					
Carbon Disulfide	10 U	10 U	10 U	10 U	10 U	10 U					
1,1-Dichloroethene	10 U	10 U	10 U	10 U	10 U	10 U					
1,1-Dichloroethane	10 U	10 U	10 U	10 U	10 U	10 U					
1,2-Dichloroethene (total)	10 U	10 U	10 U	10 U	10 U	10 U					
Chloroform	10 U	10 U	10 U	10 U	10 U	10 U					
1,2-Dichloroethane	10 U	10 U	10 U	10 U	10 U	10 U					
2-Butanone	10 UJ_	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ					
1,1,1-Trichloroethane	10 U	10 U	10 U	10 U	10 U	10 U					
Carbon Tetrachloride	10 U	10 U	10 U	10 U	10 U	10 U					
Bromodichloromethane	10 U	10 U	10 U	10 U	10 U	10 U					
1,2-Dichloropropane	10 U	10 U	10 U	10 U	10 U	10 U					
cis-1,3-Dichloropropene	10 U	10 U	10 U	10 U	10 U	10 U					
Trichloroethene	10 U	10 U	10 U	10 U	10 U	10 U					
Dibromochloromethane	10 U	10 U	10 U	10 U	10 U	10 U					
1,1,2-Trichloroethane	10 U	10 U	10 U	10 U	10 U	10 U					
Benzene	10 U	10 U	10 U	10 U	10 U	10 U					
trans-1,3-Dichloropropene	10 U	10 U	10 U	10 U	10 U	10 U					
Bromoform	10 U	10 U	10 U	10 U	10 U	10 U					
4-Methyl-2-Pentanone	10 U	10 U	10 U	10 U	10 U	10 U					
2-Hexanone	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ					
Tetrachloroethene	10 U	10 U	10 U	10 U	10 U	10 U					
1,1,2,2-Tetrachloroethane	10 U	10 U	10 U	10 U	10 U	10 U					
Toluene	10 U	10 U	_10 U	10 U	10 U	10 U					
Chlorobenzene	10 U	10 U	_10 U	10 U	10 U	10 U					
Ethylbenzene	10 U	10 U	10 U	10 U	10 U	10 U					
Styrene	10 U	10 U	10 U	10 U	10 U	10 U					
Xylene (total)	10 U_	10 U	10 U	10 U	10 U	10 U					
Total Number of TICs *	0	0	0	0	0	0					

^{*} Number, not concentrations, of tentatively identified compounds (TICs) found in each sample.

** Background groundwater sample.

Table D-2
Semivolatile Organic Analysis for Groundwater Samples (Continued)
Drum Disposal Area

		Drum Disposal Area										
	Sample Location and Number											
		Concentrations in µg/L										
	GW01	GW02	GW03	GW06**	GW05	GW04**						
	EWW99	EWW98	EWW97	EWW93	EWW94	EWW95						
Semivolatile	Glacial	Glacial	Glacial	Glacial	Glacial Drift/	Glacial Drift/						
Compound	Drift	Drift	Drift	Drift	Silurian dolomite	Silurian dolomite						
Phenol	10 U	10 U	10 U	10 U	10 U	10 U						
bis(2-Chloroethyl)Ether	10 U	10 U	10 U	10 U	10 U	10 U						
2-Chlorophenol	10 U	10 U	10 U	10 U	10 U	10 U						
1,3-Dichlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U						
1,4-Dichlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U						
1,2-Dichlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U						
2-Methylphenol	10 U	10 U	10 U	10 U	10 U	10 U						
2,2'-oxybis(1-Chloropropane)	10 U	10 U	10 U	10 U	10 U	10 U						
4-Methylphenol	10 U	10 U	10 U	10 U	10 U	10 U						
n-Nitroso-Di-n-Propylamine	10 U	10 U	10 U	10 U	10 U	10 U						
Hexachloroethane	10 U	10 U	10 U	10 U	10 U	10 U						
Nitrobenzene	10 U	10 U	10 U	10 U	10 U	10 U						
Isophorone	10 U	10 U	10 U	10 U	10 U	10 U						
2-Nitrophenol	10 U	10 U	10 U	10 U	10 U	10 U						
2,4-Dimethylphenol	10 U	10 U	10 U	10 U	10 U	10 U						
bis(2-Chloroethoxy)Methane	10 U	10 U	10 U	10 U	10 U	10 U						
2,4-Dichlorophenol	10 U	10 U	10 U	10 U	10 U	10 U						
1,2,4-Trichlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U						
Naphthalene	10 U	10 U	10 U	10 U	10 U	10 U						
4-Chloroaniline	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ						
Hexachlorobutadiene	10 U	10 U	10 U	10 U	10 U	10 U						
4-Chloro-3-Methylphenol	10 U	10 U	10 U	10 U	10 U	10 U						
2-Methylnaphthalene	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ						
Hexachlorocyclopentadiene	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ						
2,4,6-Trichlorophenol	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ						
2,4,5-Trichlorophenol	25 U	25 U	25 U	25 U	25 U	25 U						
2-Chloronaphthalene	10 U	10 U	10 U	10 U	10 U	10 U						
2-Nitroaniline	25 U	25 U	25 U	25 U	25 U	25 U						
Dimethyl Phthalate	10 U	10 U	10 U	10 U	10 U	10 U						
Acenaphthylene	10 U	10 U	10 U	10 U	10 U	10 U						
2,6-Dinitrotoluene	10 U	10 U	10 U	10 U	10 U	10 U						
3-Nitroaniline	25 UJ	25 UJ	25 UJ	25 UJ	25 UJ	25 UJ						
Acenaphthene	10 U	10 U	10 U	10 U	10 U	10 U						
2,4-Dinitrophenol	25 U	25 U	25 U	25 U	25 U	25 U						
4-Nitrophenol	25 UJ	25 UJ	25 UJ	25 UJ	25 UJ	25 UJ						
Dibenzofuran	10 U	10 U	10 U	10 U	10 U	10 U						
2,4-Dinitrotoluene	10 U	10 U	10 U	10 U	10 U	10 U						
Diethylphthalate	10 U	10 U	10 U	10 U	10 U	10 U						
4-Chlorophenyl-phenylether	10 U	10 U	10 U	10 U	10 U	10 U						
Fluorene	10 U	10 U	10 U	10 U	10 U	10 U						
4-Nitroaniline	25 UJ	25 UJ	25 UJ	25 UJ	25 UJ	25 UJ						
4,6-Dinitro-2-Methylphenol	25 U	25 U	25 U	25 U	25 U	25 U						

Table D-2 (Continued)											
Semivolatile Organic Analysis for Groundwater Samples (Continued)											
Drum Disposal Area Sample Location and Number											
				-							
	GW01	GW02	GW03	Concentrations GW06**	m ug/L GW05	GW04**					
1											
Semivolatile		EWW98	EWW97	EWW93	EWW94	EWW95					
II	Glacial	Glacial	Glacial	Glacial	Glacial Drift/	Glacial Drift/					
Compound	Drift	Drift	Drift	Drift	Silurian dolomite	Silurian dolomite					
n-Nitrosodiphenylamine	10 U	10 U	10 U	10 U	10 U	10 U					
4-Bromophenyl-phenylether	10 U	10 U	10 U	10 U	10 U	10 U					
Hexachlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U					
Pentachlorophenol	25 UJ	25 UJ	25 UJ	25 UJ	25 UJ	25 UJ					
Phenanthrene	10 U	10 U	10 U	10 U	10 U	10 U					
Anthracene	10 U	10 U	10 U	10 U	10 U	10 U					
Carbazole	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ					
di-n-Butylphthalate	10 U	10 U	10 U	10 U	3 J	1 J					
Fluoranthene	10 U	10 U	10 U	10 U	10 U	10 U					
Pyrene	10 U	10 U	10 U	10 U	10 U	10 U					
Butylbenzylphthalate	10 U	10 U	10 U	10 U	10 U	10 U					
3,3'-Dichlorobenzidine	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ					
Benzo(a)Anthracene	10 U	10 U	10 U	10 U	10 U	10 U					
Chrysene	10 U	10 U	10 U	10 U	10 U	10 U					
bis(2-Ethylhexyl)Phthalate	2 J	10 U	10 U	4 J	4 J	1 J					
di-n-Octyl Phthalate	10 U	10 U	10 U	10 U	10 U	10 U					
Benzo(b)Fluoranthene	10 U	10 U	10 U	10 U	10 U	10 U					
Benzo(k)Fluoranthene	10 U	10 U	10 U	10 U	10 U	10 U					
Benzo(a)Pyrene	10 U	10 U	10 U	10 U	10 U	10 U					
Indeno(1,2,3-cd)Pyrene	10 U	10 U	10 U	10 U	10 U	10 U					
Dibenzo(a,h)Anthracene	10 U	10 U	10 U	10 U	10 U	10 U					
Benzo(g,h,i)Perylene	10 U	10 U	10 U	10 U	10 U	10 U					
Total Number of TICs * 2 15 10 0 8 16											

^{*} Number, not concentration, of tentatively identified compounds (TICs) found in each sample.

** Background groundwater sample.

Table D-3												
Pesticide/PCB Analysis for Groundwater Samples												
Drum Disposal Area												
	Sample Location and Number											
Pesticide/				entraition in µg/								
PCB	GW01	GW02	GW03	GW06*	GW05	GW04*						
	EWW99	EWW98	EWW97	EWW93	EWW94	EWW95						
	Glacial	Glacial	Glacial	Glacial	Glacial Drift/	Glacial Drift/						
	<u>Drift</u>	Drift	Drift	Drift	Silurian dolomite	Silurian dolomite						
Alpha-BHC	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ						
Beta-BHC	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ						
Delta-BHC	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ						
Gamma-BHC (Lindane)	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ						
Heptachlor	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ						
Aldrin	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ						
Heptachlor Epoxide	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ						
Endolsulfan I	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ						
Dieldrin	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ						
4,4'-DDE	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ						
Endrin	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ						
Endosulfan II	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ						
4,4'-DDD	0.10 UJ	0.10 UJ	0.025 J	0.20 J	10.48 0	0.10 UJ						
Endosulfan Sulfate	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ						
4,4'-DDT	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ						
Methoxychlor	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ						
Endrin Ketone	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ						
Endrin Aldehyde	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ						
Alpha-Chlordane	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ						
Gamma-Chlordane	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ	0.050 UJ						
Toxaphene	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ						
Aroclor-1016	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ						
Aroclor-1221	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ						
Aroclor-1232	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ						
Aroclor-1242	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ						
Aroclor-1248	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ						
Aroclor-1254	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ						
Aroclor-1260	1.0 UJ	1.0 UJ	1.0_UJ	1.0 UJ	1.0 UJ	1.0 UJ						

* Background groundwater sample. Shaded area denotes key sample.

gwpest

Table D-4											
Inorganic Analysis for Groundwater Samples											
Drum Disposal Area											
Sample Location and Number											
Metals	Concentration in µg/L										
and	GW01	GW02	GW03	GW06**	GW05	GW04**					
Cyanide	MEWZ99	MEWZ98	MEWZ97	MEWZ93	MEWZ94	MEWZ95					
	Glacial	Glacial	Glacial	Glacial	Glacial Drift/	Glacial Drift/					
	<u>Drift</u>	Drift	<u>Drift</u>	<u>Drift</u>		Silurian dolomite					
Aluminum	* \$ * * \$	1000	25.0 U	25.0 U	25.0 U	25.0 U					
Antimony	26.0 U	26.0 U	26.0 U	26.0 U	26.0 U	26.0 U					
Arsenic	1.1 JB	1.6 B	1.0 UJ	1.1 JB	2.9 B	1.3 JB					
Barium	67.0 JB	126 JB	30.3 JB	66.7 JB	29.1 JB 1.0 U	23.2 JB					
Beryllium	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
Cadmium	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U					
Calcium	128000 J	89200 J	101000 J	121000 J	55800 J	104000 J					
Chromium	3.1 B	3.0 U	3.6 B	3.9 JB	3.0 U	3.0 U					
Cobalt	4.0 U	3.15.00;为深渊	4.0 U	4.0 U	4.0 U	4.0 U					
Copper	A STATE OF THE STA	2.0 UJN*	2.0 UJN*	2.0 UJN*	10.6 JBN*	176 JN*					
Iron	and the second	12.0 U	12.0 U	70.1 UB	12.0 U	32.4 UB					
Lead	7/4	1.1 JBW	1.0 UJW	1.0 UJW	1.2 JBW	1.0 UJW					
Magnesium	65900	39900	50800	56100	40600	45700 J					
Manganese	203 J	939 J	19.8 J	55.3 J	13.8 JB	23.9					
Mercury	0.20 U	0.20 U	0. 2 0 U	0.20 U	0.20 U	0.20 U					
Nickel	14.0 U	14.0 U	32.6 B	136.0	14.0 U	99.4					
Potassium	453 U	1250 B	453 U	968 B	e comit	3180 B					
Selenium	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
Silver	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U					
Sodium	8910 J	7760 J	6390 J	148000 J	50500 J	26900 J					
Thallium	1.3 JBW	1.0 UJW	induly.	_1.0 UJW	1.1 JBW	1.0 UJW					
Vanadium	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U					
Zinc	37.1 J*	3.5 JB*	3.0 UJ*	3.0 JB*	3.0 UJ*	98.3 J*					
Cyanide	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U					

gwmetals

^{**} Background groundwater sample. Shaded area denotes key sample.

Table D-5 Semivolatile Organic Analysis for Groundwater Samples Tentatively Identified Compounds

Drum Disposal Area									
	Retention	Estimated							
Compound Name	Time	Concentration (µg/L)							
Sample GW01 (EWW99)									
Aliphatic Compound	8.50	85 J							
Unknown	27.83	4 J							
4.7.1.	le GW02 (EWW98)								
Unknown	4.25	6 J							
Unknown	5.42	3 J							
Aliphatic Compound	5.80	600 J							
Unknown	7.57	40 J							
Aliphatic Compound	8.78	170 J							
Unknown		4 J							
	9.68								
Aliphatic Compound	9.78	6 J							
Unknown	15.15	11 J							
Unknown	21.33	3 J							
Unknown	24.40	9 J							
Unknown	24.82	8 J							
Unknown	25.57	7 J							
Unknown	25.87	20 J							
Unknown	26.87	25 J							
Unknown	27.87	3 J							
Samp	le GW03 (EWW97)								
Unknown	23.78	4 J							
Unknown	24.40	10 J							
Unknown	24.53	2 J							
Unknown	24.63	3 J							
Aliphatic Compound	24.82	4 J							
Unknown	25.07	10 J							
Unknown	25.22	7 J							
Unknown	25.40	23 J							
Unknown	25.62	25 J							
Unknown	25.87	38 J							
Aliphatic Compound	04 (EWW95) Background 15.98	6 J							
Aliphatic Compound	17.05	6 J							
Aliphatic Hydrocarbon	17.12	4 J							
Aliphatic Compound	18.07	7 J							
Aliphatic Compound	19.03	7 J 4 J							
Alcohol	19.65	6 J							
Aliphatic Compound	20.35	19 J							
Unknown	21.28	4 J							
Aliphatic Hydrocarbon		5 J							
	22.08								
Unknown	22.42	17 J							
Unknown	23.60	5 J							
Phenol, 4,4'-Butylidenebis-2	25.03	16 JN							
Alcohol	26.92	3 J							

Table D-5 (Continued) Semivolatile Organic Analysis for Groundwater Samples Tentatively Identified Compounds Drum Disposal Area Retention Estimated Compound Name Concentration (µg/L) Time Sample GW04 (EWW95) Background (Continued) 27.92 130 J Unknown 28.07 9 J Unknown Unknown 29.25 16 J Sample GW05 (EWW94) 10 J Aliphatic Compound 14.48 Alcohol 24 J 19.67

20.33

22.42

23.60

25.08

26.92

29.25

Cyclic Aliphatic Compound

Aliphatic Compound

Unknown

Unknown

Alcohol

Unknown

svtic-gw

14 J

3 J

18 J

5 J

5 J

4 J

Table D-6										
Volatile Organic Analysis for Surface Soil Samples										
Drum Disposal Area										
		<u> </u>		Location and I	Vumber					
			Conc	centrations in u	g/kg					
	SS01	SS02	SS03	SS04	SS05	SS06	SS07			
Volatile	EWW80	EWW79	EWW78	EWW77	EWW76	EWW75	EWW74			
Compound				(Background)						
Chloromethane	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
Bromomethane	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
Vinyl Chloride	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
Chloroethane	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
Methylene Chloride	10000	13 U	12 U	12 U	14 U	13 U	13 U			
Acetone	15 U	14 U	17 U	17 U	18 U	20 U	15 U			
Carbon Disulfide	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
1,1-Dichloroethene	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
1,1-Dichloroethane	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
1,2-Dichloroethene (total)	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
Chloroform	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
1,2-Dichloroethane	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
2-Butanone	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
1,1,1-Trichloroethane	12 U	13 U	12 U	12 U	14 U	13_U	13 U			
Carbon Tetrachloride	12 U	13 U	12 U	12 U	14 U	13_U	13 U			
Bromodichloromethane	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
1,2-Dichloropropane	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
cis-1,3-Dichloropropene	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
Trichloroethene	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
Dibromochloromethane	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
1,1,2-Trichloroethane	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
Benzene	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
trans-1,3-Dichloropropene	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
Bromoform	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
4-Methyl-2-Pentanone	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
2-Hexanone	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
Tetrachloroethene	12 U	13 U	12 U	12 U	14 U	13 U	13 U			
1,1,2,2-Tetrachloroethane	12 U	13 U	12 U	12 U	14 U	13_U	13 U			
Toluene	12 U	2 J	12 U	12 U	1 J	13_U	13 U			
Chlorobenzene	12 U	13 UJ	12 U	12 U	14 U	13 U	13 U			
Ethylbenzene	12 U	13 UJ	12_U	12 U	14 U	13 U	13 U			
Styrene	12 U	13 UJ	12 U	12 U	14 U	13_U	13 U			
Xylene (total)	12 U	13 UJ	12 U	12 U	14 U	13 U	13 U			
Total Number of TICs *	0	0	0	0	0	1	0			

^{*} Number, not concentrations, of tentatively identified compounds (TICs) found in each sample. Shaded area denotes key sample.

SS-VOLAT

Table D-7 Semivolatile Organic Analysis for Surface Soil Sample Drum Disposal Area

	Sample Location and Number									
		Concentrations in µg/kg								
	SS01	SS02	SS03	SS04	SS05	SS06	SS07			
Semivolatile	EWW80	EWW79	EWW78	EWW77	EWW76	EWW75	EWW74			
Compound				(Background)		2				
Phenol	410 U	430 U	390 U	400 U	74 J	420 U	420 U			
bis(2-Chloroethyl)Ether	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
2-Chlorophenol	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
1,3-Dichlorobenzene	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
1,4-Dichlorobenzene	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
1,2-Dichlorobenzene	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
2-Methylphenol	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
2,2'-oxybis(1-Chloropropane)	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
4-Methylphenol	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
n-Nitroso-Di-n-Propylamine	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
Hexachloroethane	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
Nitrobenzene	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
Isophorone	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
2-Nitrophenol	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
2,4-Dimethylphenol	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
bis(2-Chloroethoxy)Methane	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
2,4-Dichlorophenol	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
1,2,4-Trichlorobenzene	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
Naphthalene	410 U	430 U	65 J	400 U	450 U	420 U	420 U			
4-Chloroaniline	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
Hexachlorobutadiene	410 U	430 U	390 U	400 U	450 UJ	420 U	420 U			
4-Chloro-3-Methylphenol	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
2-Methylnaphthalene	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
Hexachlorocyclopentadiene	410 UJ	430 UJ	390 UJ	400 UJ	450 U	420 UJ	420 UJ			
2,4,6-Trichlorophenol	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
2,4,5-Trichlorophenol	1000 U	1000 U	940 U	980 U	1100 U	1000 U	1000 U			
2-Chloronaphthalene	410 U	430 U	390 U	400 U	450 U	42 0 U	420 U			
2-Nitroaniline	1000 U	1000 U	940 U	980 U	1100 U	1000 U	1000 U			
Dimethyl Phthalate	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
Acenaphthylene	410 U	430 U	210 J	400 U	450 U	420 U	420 U			
2,6-Dinitrotoluene	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
3-Nitroaniline	1000 UJ	1000 UJ	940 UJ	980 UJ	1100 UJ	1000 UJ	1000 UJ			
Acenaphthene	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
2,4-Dinitrophenol	1000 UJ	1000 UJ	940 UJ	980 UJ	1100 UJ	1000 UJ	1000 UJ			
4-Nitrophenol	1000 U	1000 U	940 U	980 U	1100 U	1000 U	1000 U			
Dibenzofuran	410 U	430 U	28 J	400 U	450 U	420 U	420 U			
2,4-Dinitrotoluene	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
Diethylphthalate	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
4-Chlorophenyl-phenylether	410 U	430 U	390 U	400 U	450 U	420 U	420 U			
Fluorene	410 U	430 U	56 J	400 U	450 U	420 U	420 U			

Table D-7 (Continued)								
Semivolatile Organic Analysis for Surface Soil Sample								
Drum Disposal Area								
	Sample Location and Number							
	Concentrations in μg/kg							
,	SS01	SS02	02 SS03 SS04		SS05	SS06	SS07	
Semivolatile	EWW80	EWW79	EWW78	EWW77	EWW76	EWW75	EWW74	
Compound			(Background)				L	
4-Nitroaniline	1000 UJ	1000 UJ	940 UJ	980 UJ	1100 UJ	1000 UJ	1000 UJ	
4,6-Dinitro-2-Methylphenol	1000 U	1000 U	940 U	980 U	1100 U	1000 U	1000 U	
n-Nitrosodiphenylamine	410 UJ	430 UJ	390 UJ	400 UJ	450 UJ	420 UJ	420 UJ	
4-Bromophenyl-phenylether	410 U	430 U	390 U	400 U	450 U	420 U	420 U	
Hexachlorobenzene	410 U	430 U	390 U	400 U	450 U	420 U	420 U	
Pentachlorophenol	1000 UJ	1000 UJ	940 UJ	980 UJ	1100 UJ	1000 UJ	1000 UJ	
Phenanthrene	410 U	430 U	1600	400 U	450 U	420 U	420 U	
Anthracene	410 U	430 U	420	400 U	450 U	420 U	420 U	
Carbazole	410 UJ	430 UJ	190 J	400 UJ	450 UJ	420 UJ	420 UJ	
di-n-Butylphthalate	170 J	430 U	390 U	400 U	640	240 J	420 U	
Fluoranthene	410 U	430 U	2300	400 U	450 U	420 U	420 U	
Pyrene	410 U	430 U	2200	400 U	450 U	420 U	420 U	
Butylbenzylphthalate	410 U	430 U	390 U	400 U	450 U	420 U	420 U	
3,3'-Dichlorobenzidine	410 U	430 U	390 U	400 U	450 U	420 U	420 U	
Benzo(a)Anthracene	410 U	430 U	930	400 U	450 U	420 U	420 U	
Chrysene	410 U	430 U	1000	400 U	450 U	420 U	420 U	
bis(2-Ethylhexyl)Phthalate	410 U	430 U	390 U	400 U	450 U	420 U	420 U	
di-n-Octyl Phthalate	410 U	430 U	390 U	400 U	450 U	420 U	420 U	
Benzo(b)Fluoranthene	410 U	430 U	1000	400 U	450 U	420 U	420 U	
Benzo(k)Fluoranthene	410 U	430 U	390 U	400 U	450 U	420 U	420 U	
Benzo(a)Pyrene	410 U	430 U	460	400 U	450 U	420 U	420 U	
Indeno(1,2,3-cd)Pyrene	410 U	430 U	3 90 U	400 U	450 U	420 U	420 U	
Dibenzo(a,h)Anthracene	410 U	430 U	390 U	400 U	450 U	420 U	420 U	
Benzo(g,h,i)Perylene	410 U	430 U	390 U	400 U	450 U	420 U	420 U	
Total Number of TICs * 21 20 20 20 20 20 15							15	

ss-semiv

^{*} Number, not concentration, of tentatively identified compounds (TICs) found in each sample. Shaded area denotes key sample.

Table D-8								
Pesticide/PCB Analysis for Surface Soil Samples								
Drum Disposal Area								
	Sample Locations and Number							
	Concentrations in µg/kg							
D. C. L. D.CD	SS01	SS02	SS03	SS04	SS05	SS06	SS07	
Pesticide/PCB	EWW80	EWW79	EWW78	EWW77	EWW76	EWW75	EWW74	
A11 DIG		0.0.111		(Background)			<u> </u>	
Alpha-BHC	2.1 UJ	2.2 UJ	2.0 UJ	2.1 UJ	2.3 UJ	2.2 UJ	2.2 UJ	
Beta-BHC	2.1 UJ	2.2 UJ	2.0 UJ	5.3 P	2.3 UJ	2.2 UJ	2.2 UJ	
Delta-BHC	2.1 UJ	2.2 UJ	2.0 UJ	2.1 UJ	2.3 UJ	2.2 UJ	2.2 UJ	
Gamma-BHC (Lindane)	2.1 UJ	2.2 UJ	4.7 PX	2.1 UJ	2.3 UJ	2.2 UJ	2.2 UJ	
Heptachlor	2.1 UJ	2.2 UJ	2.0 UJ	2.1 UJ	2.3 UJ	2.2 UJ	2.2 UJ	
Aldrin	2.1 UJ	2.2 UJ	2.0 UJ	2.1 UJ	2.3 UJ	2.2 UJ	2.2 UJ	
Heptachlor Epoxide	2.1 UJ	2.2 UJ	2.0 UJ	2.1 UJ	2.3 UJ	2.2 UJ	2.2 UJ	
Endolsulfan I	2.1 UJ	2.2 UJ	2.0 UJ	2.1 UJ	2.3 UJ	2.2 UJ	2.2 UJ	
Dieldrin	4.0 UJ	4.3 UJ	3.9 UJ	4.0 UJ	4.5 UJ	4.2 UJ	4.2 UJ	
4,4'-DDE	4.0 UJ	4.3 UJ	3.9 UJ	14	4.5 UJ	4.2 UJ	4.2 UJ	
Endrin	4.0 UJ	4.3 UJ	3.9 UJ	4.0 UJ	4.5 UJ	4.2 UJ	4.2 UJ	
Endosulfan II	4.0 UJ	4.3 UJ	3.9 UJ	4.0 UJ	4.5 UJ	4.2 UJ	4.2 UJ	
4,4'-DDD	4.0 UJ	4.3 UJ	3.9 UJ	3.4 J	4.5 UJ	4.2 UJ	4.2 UJ	
Endosulfan Sulfate	4.0 UJ	4.3 UJ	3.9 UJ	4.0 UJ	4.5 UJ	4.2 UJ	4.2 UJ	
4,4'-DDT	4.0 UJ	4.3 UJ	3.9 UJ	5.8	4.5 UJ	4.2 UJ	4.2 UJ	
Methoxychlor	21 UJ	22 UJ	20 UJ	21 UJ	23 UJ	22 UJ	22 UJ	
Endrin Ketone	4.0 UJ	4.3 UJ	3.9 UJ	4.0 UJ	4.5 UJ	4.2 UJ	4.2 UJ	
Endrin Aldehyde	4.0 UJ	4.3 UJ	3.9 UJ	4.0 UJ	4.5 UJ	4.2 UJ	4.2 UJ	
Alpha-Chlordane	2.1 UJ	2.2 UJ	2.0 UJ	2.1 UJ	2.3 UJ	2.2 UJ	2.2 UJ	
Gamma-Chlordane	2.1 UJ	2.2 UJ	2.0 UJ	2.1 UJ	2.3 UJ	2.2 UJ	2.2 UJ	
Toxaphene	210 UJ	220 UJ	200 UJ	210 UJ	230 UJ	220 UJ	220 UJ	
Aroclor-1016	40 UJ	43 UJ	39 UJ	40 UJ	45 UJ	42 UJ	42 UJ	
Aroclor-1221	82 UJ	87 UJ	79 UJ	82 UJ	91 UJ	86 UJ	85 UJ	
Aroclor-1232	40 UJ	43 UJ	39 UJ	40 UJ	45 UJ	42 UJ	42 UJ	
Aroclor-1242	40 UJ	43 UJ	39 UJ	40 UJ	45 UJ	42 UJ	42 UJ	
Aroclor-1248	40 UJ	43 UJ	39 UJ	40 UJ	45 UJ	42 UJ	42 UJ	
Aroclor-1254	40 UJ	43 UJ	39 UJ	40 UJ	45 UJ	42 UJ	42 UJ	
Aroclor-1260	40 UJ	43 UJ	39 UJ	40 UJ	45 UJ_	42 UJ	42 UJ	

sspest

Shaded area denotes key sample.

Table D-9										
Inorganic Analysis for Surface Soil Samples										
Drum Disposal Area										
	Sample Location and Number									
Metals	Concentrations in mg/kg									
and	SS01	SS02	SS03	SS04	SS05	SS06	SS07			
Cyanide	MEWZ80	MEWZ79	MEWZ78	MEWZ77	MEWZ76	MEWZ75	MEWZ74			
				(Background)						
Aluminum	11800	9290	5730	11600	65100	11600	13000			
Antimony	8.6 UJN	9.1 UJN	8.6 UJN	8.6 UJN	13.4 JBN	8.7 UJN	8.9 UJN			
Arsenic	16.6	8.4	2.9	8.8	28.9	14.5	7.7			
Barium	56.0	121	93.2	101	6930	91.7	121			
Beryllium	0.80 B	0.75 B	1.0 B	0.83 B	3,4 J	0.96 B	1.0 B			
Cadmium	0.66 U	0.70 U	0.66 U	0.66 U	1.0 B	0.67 U	0.69 U			
Calcium	2800	1440	129000	2050	91100	3480	3560			
Chromium	18.4	13.4	5.0	17.6	32.8	19.0	18.6			
Cobalt	12.9	11.3 B	1.9 B	13.1	22.2	12.1 B	16.7			
Copper	33.4	16.9	9.2 J	20.2 J	129	24.4	20.6			
Iron	31100	18400	5430	21400 J	36500	30500	24500			
Lead	29.5	27.2 S	10.7	27.7	36.3	27.8	16.5 S			
Magnesium	3790	1840	47700	2890 J	129(H)	3020	3960			
Manganese	734	867	416	798 J	307	872	1180			
Mercury	0.08 B	0.06 U	0.06 U	0.06 U	0.07 U	0.06 U	0.06 U			
Nickel	28.2	17 J	4.4 UB	21.4 U	29.3 J	21.5 U	30.1			
Potassium	1590 U	1260 UB	531 U	1520 U	1940 U	1270 U	1110 UB			
Selenium	0.20 UJW	0.42 JBW	0.98 U	0.42 JBW	4.5 B	0.37 B	0.20 U			
Silver	0.83 U	0.88 U	0.83 U	0.83 U	0.90 U	0.84 U	0.86 U			
Sodium	102 ЛВ	54.3 UB	261 JB	65.2 UB	17900 J	111 JB	74.9 UB			
Thallium	0.43 JBW	0.23 UJW	0.30 JBW	0.29 B	1.4 JBW	0.32 JBW	0.38 B			
Vanadium	25.9	23.2 J	11.7 J	25.8 J	134 J	28.1 J	31.9 J			
Zinc	66.6 JE	56.8 JE	20.1 JE	58.3 JE	71.0 JE	65.7 JE	55.9 JE			
Cyanide	0.15 B	0.28 B	0.06 U	0.14 B	0.09 B	0.06 U	0.06 U			

soilmet

Shaded area denotes key sample.

Table D-10				
Volatile Organic Analysis for Surface Soil Samples				
Tentatively Identified Compounds				
Drum Disposal Area				
Retention Estimated				
Compound Name Time Concentration (µg/kg)				
Sample SS06 (EWW75)				
Unknown	2.62	6 J		

vtic-ss

Table D-11 Semivolatile Organic Analysis for Surface Soil Samples Tentatively Identified Compounds

Drum Disposal Area Estimated Retention Concentration (µg/kg) Compound Name Time Sample SS01 (EWW80) 130 J Unknown Alkane 4.62 Unknown 4.80 720 J 100 JN 5.68 5,5-Dimethyl-2(5H)-Furanone 6.92 130 J Unknown 95 J Unknown 18.65 110 JB Unknown Siloxane 19.07 140 JB Unknown Siloxane 21.23 130 JN Hexadeanoic Acid 22.93 Unknown Siloxane 23.20 140 JB 190 JB 25.02 Unknown Siloxane 220 J Unknown Alkane 25.72 190 JB Unknown Siloxane 26.68 Unknown Alkane 26.83 530 J 780 J Unknown Alkane 27.93 750 J Unknown Alkane 29.02 240 JB Unknown Siloxane 29.85 570 J Unknown Alkane 30.10 1400 J Unknown Alkane 31.23 540 JB Unknown Siloxane 31.50 Unknown Alkane 32.43 510 J 420 J Unknown Alkane 33.83 Sample SS02 (EWW79) 720 J Unknown 4.80 5.70 140 J Unknown Unknown 6.93 280 J Unknown Siloxane 21.25 140 JB Unknown Organic Acid 22.97 290 J Unknown Siloxane 23.22 150 JB Unknown Siloxane 25.05 300 JB 290 JB Unknown Siloxane 26.70 Unknown Alkane 26.83 190 J 280 J Unknown Alkane 27.93 Unknown Alkane 29.02 330 J Unknown Siloxane 29.85 320 JB Unknown Alkane 30.10 210 J Unknown Alkane 31.23 1000 J Unknown Siloxane 31.50 1000 JB Unknown Alkane 32.45 250 J Unknown Siloxane 33.43 250 JB Unknown Alkane 33.90 700 J 37.42 Unknown 580 J Unknown 37.48 600 J

Table D-11 (Continued) Semivolatile Organic Analysis for Surface Soil Samples Tentatively Identified Compounds Drum Disposal Area

Drum	Disposal Area	
	Retention	Estimated
Compound Name	Time	Concentration (µg/kg)
Sample	SS03 (EWW78)	
Unknown	4.80	680 J
Unknown	6.95	230 J
Unknown Alkane	19.47	180 J
Unknown Alkane	19.55	110 J
Unknown Alkane	20.83	150 J
Unknown Alkane	22.15	290 J
Unknown	22.83	180 J
Unknown Alkane	23.40	140 J
Unknown Polynuclear Aromatic	24.23	130 J
Benzo(B)Naphthao(2,2-D)Fura	24.67	170 JN
Unknown Siloxane	25.05	280 JB
Unknown Alkane	25.73	280 J
Unknown Polynuclear Aromatic	25.92	200 J
Unknown Siloxane	26.72	2500 ЛВ
Unknown Alkane	26.87	3100 J
Unknown Polynuclear Aromatic	27.67	2100 J
Unknown Alkane	27.97	4200 J
Unknown Alkane	29.07	4800 J
Unknown Siloxane	29.88	2900 ЛВ
Unknown Alkane	30.17	3100 J
	(EWW77) Backgrou	nd
Unknown	4.60	96 J
Unknown	4.77	580 J
Unknown	6.92	150 J
Unknown Siloxane	19.07	130 ЛВ
Unknown Siloxane	21.25	160 JB
Unknown Organic Acid	22.93	190 J
Unknown Siloxane	23.22	160 JB
Unknown Siloxane	25.03	210 ЛВ
Unknown Alkane	25.72	130 J
Unknown Siloxane	26.70	230 ЛВ
Unknown Alkane	26.83	330 J
Unknown Alkane	27.93	540 J
Unknown Alkane	29.02	570 J
Unknown Siloxane	29.85	270 JB
Unknown Alkane	30.10	410 J
Unknown Alkane	31.23	1500 J
Unknown Siloxane	31.52	690 ЛВ
Unknown Alkane	32.42	470 J
Unknown Alkane	33.90	1100 J
Unknown	37.27	270 J

Table D-11 (Continued) Semivolatile Organic Analysis for Surface Soil Samples Tentatively Identified Compounds Drum Disposal Area

Drum Disposal Area						
Retention Estimated						
Compound Name	Time	Concentration (µg/kg)				
Sample	e SS05 (EWW76)					
Unknown 4.77 520 J						
Unknown	15.53	290 J				
Unknown	16.12	370 J				
Unknown	22.68	380 J				
Unknown	23.23	1600 ЛВ				
Unknown	23.58	280 J				
7-Butyl-1-Hexylnaphthalene	24.53	310 JN				
Unknown	24.87	480 J				
Unknown Siloxane	25.05	310 JB				
Unknown Alkane	25.73	400 J				
Tetramethyl Phenathrene Isom	25.80	450 J				
Unknown Siloxane	26.72	320 JB				
Unknown Alkane	26.85	740 J				
Unknown Alkane	27.95	980 J				
Unknown	28.95	460 J				
Unknown Alkane	29.03	1000 J				
Unknown	29.22	350 J				
Unknown Siloxane	29.87	330 JB				
Unknown Alkane	30.13	690 J				
Unknown Alkane	31.27	3600 J				
Sample	e SS06 (EWW75)					
Unknown	4.80	750 J				
Unknown	5.18	87 J				
Unknown	5.70	88 J				
Unknown	6.93	240 J				
Unknown Siloxane	19.08	120 ЛВ				
Unknown Siloxane	21.27	170 JB				
Unknown Organic Acid	22.97	220 J				
Unknown Siloxane	23.22	150 JB				
Unknown Siloxane	25.05	250 ЈВ				
Unknown	25.22	500 J				
Unknown Siloxane	26.70	230 JB				
Unknown	28.92	170 J				
Unknown Alkane	29.02	91 J				
Unknown Siloxane	29.87	260 JB				
Unknown Alkane	31.20	490 J				
Unknown Siloxane	31.52	660 JB				
Unknown	32.87	190 J				
Unknown Siloxane	33.43	150 JB				
Unknown	33.88	690 J				
<u>Unknown</u>	37.40	530 J				

Table D-11 (Continued) Semivolatile Organic Analysis for Surface Soil Samples Tentatively Identified Compounds

Drum Disposal Area Retention Estimated Compound Name Time Concentration (µg/kg) Sample SS07 (EWW74) 710 J Unknown 4.78 Unknown 6.23 130 J Unknown 6.92 130 J Unknown Siloxane 19.08 120 JB Unknown Siloxane 21.27 160 JB Unknown Organic Acid 22.93 110 J Unknown Siloxane 23.22 150 JB 260 J Unknown Siloxane 25.05 230 JB Unknown Siloxane 26.72 Unknown Siloxane 29.87 260 JB Unknown Siloxane 31.50 620 JB Unknown 32.15 90 J 150 JB 33.37 Unknown Unknown 33.75 100 J Unknown 37.20 250 J

tic-ss

Table D-12					
Volatile Organic Analys		Vater Samp	les		
_{II} -	Drum Disposal Area				
	Sample Locations and Number				
	Concen	trations in p			
	SW01	SW02	SW03		
1.	EWW90	EWW89	EWW87		
Volatile Compound	(Background)				
Chloromethane	10 U	10 U	10 U		
Bromomethane	10 U	10 U	10 U		
Vinyl Chloride	10 U	10 U	10 U		
Chloroethane	10 U	10 U	10 U		
Methylene Chloride	10 U	10 U	10 U		
Acetone	10 UJ	10 UJ	10 UJ		
Carbon Disulfide	10 U	10 U	10 U		
1,1-Dichloroethene	10 U	10 U	10 U		
1,1-Dichloroethane	10 U	10 U	10 U		
1,2-Dichloroethene (total)	10 U	10 U	10 U		
Chloroform	10 U	10 U	10 U		
1,2-Dichloroethane	10 U	10 U	10 U		
2-Butanone	10 U	10 U	10 U		
1,1,1-Trichloroethane	10 U	10 U	10 U		
Carbon Tetrachloride	10 U	10 U	10 U		
Bromodichloromethane	10 U	10 U	10 U		
1,2-Dichloropropane	10 U	10 U	10 U		
cis-1,3-Dichloropropene	10 U	10 U	10 U		
Trichloroethene	10 U	10 U	10 U		
Dibromochloromethane	10 U	10 U	10 U		
1,1,2-Trichloroethane	10 U	10 U	10 U		
Benzene	10 U	10 U	10 U		
trans-1,3-Dichloropropene	10 U	10 U	10 U		
Bromoform	10 U	10 U	10 U		
4-Methyl-2-Pentanone	10 U	10 U	10 U		
2-Hexanone	10 U	10 U	10 U		
Tetrachloroethene	10 U	10 U	10 U		
1,1,2,2-Tetrachloroethane	10 U	10 U	10 U		
Toluene	10 U	10 U	10 U		
Chlorobenzene	10 U	10 U	10 U		
Ethylbenzene	10 U	10 U	10 U		
Styrene	10 U	10 U	10 U		
Xylene (total)	10 U	10 U	10 U		
Total Number of TICs *	0	0	0		

^{*} Number, not concentrations, of tentatively identified compounds
(TICs) found in each sample.

Semivolatile Organ			nples		
	Drum Disposal A		:		
	Sample Location and Number				
	Con	ncentrations in µ	g/L		
	SW01	SW02	SW03		
Semivolatile	Background	EWW89	EWW87		
Compound	EWW90				
Phenol	10 U	10 U	10 U		
bis(2-Chloroethyl)Ether	10 U	10 U	10 U		
2-Chlorophenol	10 U	10 U	10 U		
1,3-Dichlorobenzene	10 U	10 U	10 U		
1,4-Dichlorobenzene	10 U	10 U	10 U		
1,2-Dichlorobenzene	10 U	10 U	10 U		
2-Methylphenol	10 U	10 U	10 U		
2,2'-oxybis(1-Chloropropane)	10 U	10 U	10 U		
4-Methylphenol	10 U	10 U	10 U		
n-Nitroso-Di-n-Propylamine	10 U	10 U	10 U		
Hexachloroethane	10 U	10 U	10 U		
Nitrobenzene	10 U	10 U	10 U		
Isophorone	10 U	10 U	10 U		
2-Nitrophenol	10 U	10 U	10 U		
2,4-Dimethylphenol	10 U	10 U	10 U		
bis(2-Chloroethoxy)Methane	10 U	10 U	10 U		
2,4-Dichlorophenol	10 U	10 U	10 U		
1,2,4-Trichlorobenzene	10 U	10 U	10 U		
Naphthalene	10 U	10 U	10 U		
4-Chloroaniline	10 U	10 U	10 U		
Hexachlorobutadiene	10 U	10 U	10 U		
4-Chloro-3-Methylphenol	10 U	10 UJ	10 U		
2-Methylnaphthalene	10 U	10 U	10 U		
Hexachlorocyclopentadiene	10 U	10 U	10 U		
2,4,6-Trichlorophenol	10 U	10 U	10 U		
2,4,5-Trichlorophenol	25 U	25 U	25 U		
2-Chloronaphthalene	10 U	10 U	10 U		
2-Nitroaniline	25 U	25 U	25 U		
Dimethyl Phthalate	10 U	10 U	10 U		
Acenaphthylene	10 U	10 U	10 U		
2,6-Dinitrotoluene	10 U	10 U	10 U		
3-Nitroaniline	25 U	25 U	25 U		
Acenaphthene	10 U	10 U	10 U 25 UJ		
2,4-Dinitrophenol	25 UJ	25 UJ			
4-Nitrophenol	25 U	25 UJ	25 U		
Dibenzofuran	10 U	10 U	10 U		
2,4-Dinitrotoluene	10 U	10 U	10 U		
Diethylphthalate	10 U	10 U	10 U		
4-Chlorophenyl-phenylether	10 U	10 U	10 U		
Fluorene	10 U	10 U	10 U		

Table D-13

Table D-13 (Continued)						
Semivolatile Organ	ic Analysis for S	urface Water San	nples			
<u>_</u>	Drum Disposal A					
	Sampl	e Location and N	lumber			
		ncentrations in μ	g/L			
	SW01	SW02 ·	SW03			
Semivolatile	Background	EWW89	EWW87			
Compound	EWW90					
4-Nitroaniline	25 U	25 U	25 U			
4,6-Dinitro-2-Methylphenol	25 U	25 U	25 U			
n-Nitrosodiphenylamine	10 UJ	10 UJ	10 UJ			
4-Bromophenyl-phenylether	10 U	10 U	10 U			
Hexachlorobenzene	10 U	10 U	10 U			
Pentachlorophenol	25 UJ	25 UJ	25 UJ			
Phenanthrene	10 U	10 U	10 U			
Anthracene	10 U	10 U	10 U			
Carbazole	10 U	10 U	10 U			
di-n-Butylphthalate	10 U	10 U	10 U			
Fluoranthene	10 U	10 U	10 U			
Pyrene	10 U	10 U	10 U			
Butylbenzylphthalate	10 U	10 U	10 U			
3,3'-Dichlorobenzidine	10 U	10 U	10 U			
Benzo(a)Anthracene	10 U	10 U	10 U			
Chrysene	10 U	10 U	10 U			
bis(2-Ethylhexyl)Phthalate	10 U	10 U	10 U			
di-n-Octyl Phthalate	10 U	10 U	10 U			
Benzo(b)Fluoranthene	10 U	10 U	10 U			
Benzo(k)Fluoranthene	10 U	10 U	10 U			
Benzo(a)Pyrene	10 U	10 U	10 U			
Indeno(1,2,3-cd)Pyrene	10 U	10 U	10 U			
Dibenzo(a,h)Anthracene	10 U	10 U	10 U			
Benzo(g,h,i)Perylene	10 U	10 U	10 U			
Total Number of TICs * 9 7 7						

* Number, not concentration, of tentatively identified compounds (TICs) found in each sample.

sw-semiy

Table D-14							
Pesticide/PC	B Analysis for Sur		oles				
	Drum Disposal	Area					
	Sample	Location and Nu	ımber				
	Con	centrations in µg	/L				
	SW01	SW01 SW02 SW03					
	EWW90 EWW89 EWW8						
Pesticide/PCB	(Background)						
Alpha-BHC	0.050 UJ	0.050 UJ	0.050 UJ				
Beta-BHC	0.050 UJ	0.050 UJ	0.050 UJ				
Delta-BHC	0.050 UJ	0.050 UJ	0.050 UJ				
Gamma-BHC (Lindane)	0.050 UJ	0.050 UJ	0.050 UJ				
Heptachlor	0.050 UJ	0.050 UJ	0.050 UJ				
Aldrin	0.050 UJ	0.050 UJ	0.050 UJ				
Heptachlor Epoxide	0.050 UJ	0.050 UJ	0.050 UJ				
Endolsulfan I	0.050 UJ	0.050 UJ	0.050 UJ				
Dieldrin	0.10 UJ	0.10 UJ	0.10 UJ				
4,4'-DDE	0.10 UJ	0.10 UJ	0.10 UJ				
Endrin	0.10 UJ	0.10 UJ	0.10 UJ				
Endosulfan II	0.10 UJ	0.10 UJ	0.10 UJ				
4,4'-DDD	0.10 UJ	0.10 UJ	0.10 UJ				
Endosulfan Sulfate	0.10 UJ	0.10 UJ	0.10 UJ				
4,4'-DDT	0.10 UJ	0.10 UJ	0.10 UJ				
Methoxychlor	0.50 UJ	0.50 UJ	0.50 UJ				
Endrin Ketone	0.10 UJ	0.10 UJ	0.10 UJ				
Endrin Aldehyde	0.10 UJ	0.10 UJ	0.10 UJ				
Alpha-Chlordane	0.050 UJ	0.050 UJ	0.050 UJ				
Gamma-Chlordane	0.050 UJ	0.050 UJ	0.050 UJ				
Toxaphene	5.0 UJ	5.0 UJ	5.0 UJ				
Aroclor-1016	1.0 UJ	1.0 UJ	1.0 UJ				
Aroclor-1221	2.0 UJ	2.0 UJ	2.0 UJ				
Aroclor-1232	1.0 UJ	1.0 UJ	1.0 UJ				
Aroclor-1242	1.0 UJ	1.0 UJ	1.0 UJ				
Aroclor-1248	1.0 UJ	1.0 UJ	1.0 UJ				
Aroclor-1254	1.0 UJ	1.0 UJ	1.0 UJ				
Aroclor-1260	1.0 UJ	1.0 UJ	1.0 UJ				

swpest

	Table D-15				
Inorganio	•	r Surface Water Samj	oles		
		sposal Area			
	Sa	mple Location and N			
Metals		Concentrations in µ			
and	SW01	SW02	SW03		
Cyanide	MEWZ9	0 MEWZ89	MEWZ87		
	(Backgroun				
Aluminum	636 U	620 U	2000 J		
Antimony	35.2 U	35.2 U	35.2 U		
Arsenic	1.3 U	1.3 U	1.4 JBW		
Barium	40.5 JB	E 42.4 JBE	48.9 JBE		
Beryllium	2.4 U	2.4 <u>U</u>	2.4 U		
Cadmium	2.7 U	2.7 U	2.7 U		
Calcium	76800 J	78400 J	81400 J		
Chromium	3.0 U	3.0 U	3.0 U		
Cobalt	3.8 U	3.8 U	3.8 U		
Copper	18.0 JB	21.7 JB	19.0 JB		
Iron	659 JE		2810 JE		
Lead	3.5 JN	1.2 JBN	3.3 JNW		
Magnesium	41800 J	42500 J	42800 J		
Manganese	103 J	33.0 J	147 J		
Mercury	0.10 U	0.10 U	0.10 U		
Nickel	17.8 U	17.8 U	17.8 U		
Potassium	1590 B	1590 B	3850 B		
Selenium	0.80 UJ	NW 0.80 UJNW	0.80 UJNW		
Silver	3.4 U	3.4 U	3.4 U		
Sodium	10200 J	14400 J	392040		
Thallium	0.90 U	0.90 U	4.5 UJW		
Vanadium	24.2 JB	26.8 JB	25.7 JB		
Zine	15.1 JB	* 17.5 JB*	20.0 ЈВ*		
Cyanide	0.50 U	0.50 U	0.50 U_		

Shaded area denotes key sample.

swmetals

Table D-16 Semivolatile Organic Analysis for Surface Water Samples Tentatively Identified Compounds Drum Disposal Area Concentrations in µg/L

	Retention	Estimated			
Compound Name	Time	Concentration			
Sample SW01 (EWW90) Background					
Unknown Siloxane	19.08	4 JB			
Unknown Siloxane	21.28	4 JB			
Unknown Siloxane	23.25	4 JB			
Unknown Siloxane	25.08	4 JB			
1,1'-Sulfonylbis[4-Chorobenz	26.03	29 JN			
Unknown Siloxane	26.78	4 ЛВ			
Unknown Siloxane	28.48	3 JB			
Triphenylphosphine Oxide	29.22	11 JN			
Diphenyl(Phenylmethyl)Phosph	29.95	2 JN			
Sample	SW02 (EWW89)				
Unknown Siloxane	16.57	2 J			
Unknown Siloxane	19.08	4 JB			
Unknown Siloxane	21.27	5 JB			
Unknown Siloxane	23.23	5 JB			
Unknown Siloxane	25.07	6 JB			
Unknown Siloxane	26.78	5 JB			
Unknown Siloxane	28.47	4 JB			
Sample	SW03 (EWW87)				
Unknown Siloxane	16.57	2 J			
Unknown Siloxane	19.07	3 JB			
Unknown Siloxane	21.27	3 ЛВ			
Unknown Siloxane	23.23	3 JB			
Unknown Siloxane	25.07	4 JB			
Unknown Siloxane	26.78	4 JB			
Unknown Siloxane	28.47	4 JB			

tic-sw

Table D-17					
Volati	le Organic Analys	is for Sediment S	Samples		
	Drum Disposal Area				
		Sample Location	on and Number		
		Concentrati	on in μg/kg		
Volatile	ST01	ST02	ST03	ST04	
Compound	EWW84RE	EWW83	EWW82	EWW81	
	(Background)				
Chloromethane	16 UJ	20 UJ	16 UJ	15 UJ	
Bromomethane	_ 16 U	20 U	16 U	15 UJ	
Vinyl Chloride	16 U	20 U	16 U	15 UJ	
Chloroethane	16 U	20 U	16 U	15 UJ	
Methylene Chloride	16 U	20 U	16 U	15 UJ	
Acetone	16 UJ	20 UJ	16 UJ	15 UJ	
Carbon Disulfide	16 U	20 U	16 U	15 UJ	
1,1-Dichloroethene	16 U	20 U	16 U	15 UJ	
1,1-Dichloroethane	16 U	20 U	16 U	15 UJ	
1,2-Dichloroethene (total)	16 U	20 U	16 U	15 UJ	
Chloroform	16 U	20 U	16 U	15 UJ	
1,2-Dichloroethane	16 U	2 0 U	16 U	15 UJ	
2-Butanone	16 UJ	20 UJ	16 UJ	15 UJ	
1,1,1-Trichloroethane	16 U	20 U	16 U	15 UJ	
Carbon Tetrachloride	16 U	2 0 U	16 U	15 UJ	
Bromodichloromethane	16 U	20 U	16 U	15 UJ	
1,2-Dichloropropane	16 U	20 U	16 U	15 UJ	
cis-1,3-Dichloropropene	16 U	20 U	16 U	15 UJ	
Trichloroethene	16 U	20 U	16 U	15 UJ	
Dibromochloromethane	16 U	20 U	16 U	15 UJ	
1,1,2-Trichloroethane	16 U	20 U	16 U	15 UJ	
Benzene	16 U	2 0 U	16 U	15 UJ	
trans-1,3-Dichloropropene	16 U	20 U	16 U	15 UJ	
Bromoform	16 U	2 0 U	16 U	15 UJ	
4-Methyl-2-Pentanone	16 UJ	20 UJ	16 UJ	15 UJ	
2-Hexanone	16 UJ	20 UJ	16 UJ	15 UJ	
Tetrachloroethene	16 U	20 U	7 J	6 UJ	
1,1,2,2-Tetrachloroethane	16 U	20 U	16 U	15 UJ	
Toluene	16 U	20 U	16 U	15 UJ	
Chlorobenzene	16 U	20 U	16 U	15 UJ	
Ethylbenzene	16 U	20 U	16 U	15 UJ	
Styrene	16 U	20 U	16 U	15 UJ	
Xylene (total)	16 U	20 U	16 U	15 UJ	
Total Number of TICs *	0	0	0	0	

Total Number of TICs * 0 0 0 0 0 0 * Number, not concentrations, of tentatively identified compounds (TICs) found in each sample.

SED-VOL

Table D-18 Semivolatile Organic Analysis for Sediment Samples Drum Disposal Area

	D. Call D	S 1 7 4	137 1	
	Sample Location and Number			
	Concentrations in µg/kg			
	ST01	ST02	ST03	ST04
Semivolatile	EWW84	EWW83RE	EWW82	EWW81RE
Compound	(Background)			
Phenol	520 U	660 U	520 U	510 U
bis(2-Chloroethyl)Ether	520 U	660 U	520 U	510 U
2-Chlorophenol	520 U	660 U	520 U	510 U
1,3-Dichlorobenzene	520 U	660 U	520 U	510 U
1,4-Dichlorobenzene	520 U	660 U	520 U	510 U
1,2-Dichlorobenzene	520 U	660 U	520 U	510 U
2-Methylphenol	520 U	660 U	520 U	510 U
2,2'-oxybis(1-Chloropropane)	520 UJ	660 U	520 UJ	510 U
4-Methylphenol	520 U	660 U	520 U	510 U
n-Nitroso-Di-n-Propylamine	520 U	660 U	520 U	510 U
Hexachloroethane	520 U	660 U	520 U	510 U
Nitrobenzene	520 U	660 UJ	520 U	510 UJ
Isophorone	520_U	660 U	520 U	510 U
2-Nitrophenol	520 U	660 U	520 U	510 U
2,4-Dimethylphenol	520 U	660 U	520 U	510 U
bis(2-Chloroethoxy)Methane	520 U	660 U	520 U	510 U
2,4-Dichlorophenol	520 U	660 U	520 U	510 U
1,2,4-Trichlorobenzene	520 U	660 U	520 U	510 U
Naphthalene	520 U	660 U	520 U	44 J
4-Chloroaniline	520 UJ	660 U	520 UJ	510 U
Hexachlorobutadiene	520 U	660 U	520 U	510 U
4-Chloro-3-Methylphenol	520 U	660 U	520 U	510 U
2-Methylnaphthalene	520 U	660 UJ	520 U	510 UJ
Hexachlorocyclopentadiene	520 U	660 UJ	520 U	510 UJ
2,4,6-Trichlorophenol	520 U	660 U	520 U	510 U
2,4,5-Trichlorophenol	1200 U	1600 U	1200 U	1200 U
2-Chloronaphthalene	520 U	660 U	520 U	510 U
2-Nitroaniline	1200 U	1600 U	1200 U	1200 U
Dimethyl Phthalate	520 U	660 U	520 U	510 U
Acenaphthylene	520 U	660 U	520 U	510 U
2,6-Dinitrotoluene	520 U	660 U	520 U	510 U
3-Nitroaniline	1200 U	1600 U	1200 U	1200 U
Acenaphthene	520 U	660 U	520 U	510 U
2,4-Dinitrophenol	1200 U	1600 UJ	1200 U	1200 UJ
4-Nitrophenol	1200 U	1600 UJ	1200 U	1200 UJ
Dibenzofuran	520 U	660 U	520 U	510 U
2,4-Dinitrotoluene	520 U	660 U	520 U	510 U
Diethylphthalate	520 U	660 UJ	520 U	510 UJ
4-Chlorophenyl-phenylether	520 U	660 U	520 U	510 U
Fluorene	520 U	660 U	520 U	510 U

Table D-18 (Continued) Semivolatile Organic Analysis for Sediment Samples				
Sem	•	alysis for Sediment is isposal Area	Samples	
			on and Number	
		•	ons in µg/kg	İ
	ST01	ST02	ST03	ST04
Semivolatile	EWW84	EWW83RE	EWW82	EWW81RE
Compound	(Background)	BW WOSKE	2	Z (((o i i
4-Nitroaniline	1200 U	1600 UJ	1200 UJ	1200 UJ
4,6-Dinitro-2-Methylphenol	1200 U	1600 U	1200 U	1200 U
n-Nitrosodiphenylamine	520 U	660 U	520 U	510 U
4-Bromophenyl-phenylether	520 U	660 U	520 U	510 U
Hexachlorobenzene	520 U	660 UJ	520 U	510 UJ
Pentachlorophenol	1200 U	1600 U	1200 U	1200 U
Phenanthrene	520 U	660 U	520 U	53 J
Anthracene	520 U	660 U	520 U	510 U
Carbazole	520 U	660 U	520 U	510 U
di-n-Butylphthalate	520 U	660 U	520 U	510 U
Fluoranthene	520 U	59 J	520 U	510 U
Pyrene	520 UJ	660 UJ	520 UJ	510 U
Butylbenzylphthalate	520 U	660 UJ	520 U	510 UJ
3,3'-Dichlorobenzidine	520 UJ	660 U	520 UJ	510 U
Benzo(a)Anthracene	520 U	660 U	520 U	510 U
Chrysene	520 U	660 U	520 U	510 U
bis(2-Ethylhexyl)Phthalate	520 U	660 UJ	520 U	510 UJ
di-n-Octyl Phthalate	520 U	660 UJ	520 U	510 UJ
Benzo(b)Fluoranthene	520 U	660 U	520 U	510 U
Benzo(k)Fluoranthene	520 U	660 U	520 U	510 U
Benzo(a)Pyrene	520 U	660 U	520 U	510 U
Indeno(1,2,3-cd)Pyrene	520 U	660 U	520 U	510 U
Dibenzo(a,h)Anthracene	520 U	660 U	520 U	510 U
Benzo(g,h,i)Perylene	520 U	660 U	520 U	510 U
Total Number of TICs *	0	1	0	1

sedim-sv

^{*} Number, not concentrations, of tentatively identified compounds (TICs) found in each sample.

Table D-19 Pesticide/PCB Analysis for Sediment Samples Drum Disposal Area

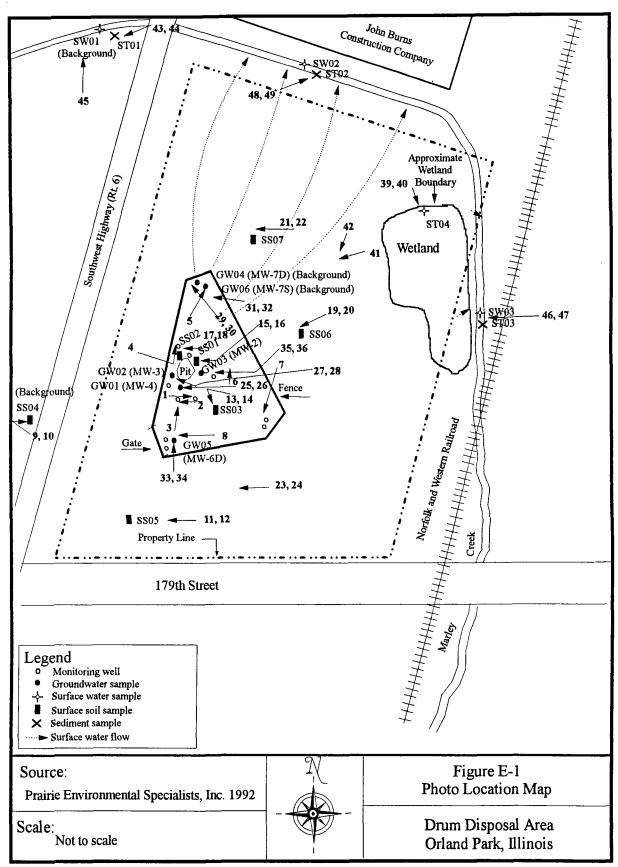
	Sample Location and Number			
	Concentrations in μg/kg			
Pesticide/	ST01	ST02	ST03	ST04
PCB	EWW84	EWW83	EWW82	EWW81
	(Background)			
Alpha-BHC	2.7 U	3.5 UJ	2.7 UJ	2.6 U
Beta-BHC	2.7 U	3.5 UJ	2.7 UJ	2.6 U
Delta-BHC	2.7 U	3.5 UJ	2.7 UJ	2.6 U
Gamma-BHC (Lindane)	2.7 U	3.5 UJ	2.7 UJ	2.6 U
Heptachlor	2.7 U	3.5 UJ	2.7 UJ	2.6 U
Aldrin	2.7 U	3.5 UJ	2.7 UJ	2.6 U
Heptachlor Epoxide	2.7 U	3.5 UJ	2.7 UJ	2.6 U
Endosulfan I	2.7 U	3.5 UJ	2.7 UJ	2.6 U
Dieldrin	5.2 U	6.7 UJ	5.2 UJ	5.1 U
4,4'-DDE	5.2 U	6.7 UJ	5.2 UJ	5.1 U
Endrin	5.2 U	6.7 UJ	5.2 UJ	5.1 U
Endosulfan II	5.2 U	6.7 UJ	5.2 UJ	5.1 U
4,4'-DDD	5.2 U	6.7 UJ	5.2 UJ	5.1 U
Endosulfan Sulfate	5.2 U	6.7 UJ	5.2 UJ	5.1 U
4,4'-DDT	5.2 U	6.7 UJ	5.2 UJ	5.1 U
Methoxychlor	27 U	35 UJ	27 UJ	26 U
Endrin Ketone	5.2 U	6.7 UJ	5.2 UJ	5.1 U
Endrin Aldehyde	5.2 U	6.7 UJ	5.2 UJ	5.1 U
Alpha-Chlordane	2.7 U	3.5 UJ	2.7 UJ	2.6 U
Gamma-Chlordane	2.7 U	3.5 UJ	2.7 UJ	2.6 U
Toxaphene	270 U	350 UJ	270 UJ	260 U
Aroclor-1016	52 U	67 UJ	52 UJ	51 U
Aroclor-1221	100 U	140 UJ	100 UJ	100 U
Aroclor-1232	52 U	67 UJ	52 UJ	51 U
Aroclor-1242	52 U	67 UJ	52 UJ	51 U
Aroclor-1248	52 U	67 UJ	52 UJ	51 U
Aroclor-1254	52 U	67 UJ	52 UJ	51 U
Aroclor-1260	52 U	67 UJ	52 UJ	51 U

PESTSED

Table D-20						
Inorganic Analysis for Sediment Samples						
Drum Disposal Area						
	Sample Location and Number					
Metals and	Concentrations in mg/kg					
Cyanide	ST01	ST02	ST03	ST04		
Cymnus	MEWZ84	MEWZ83	MEWZ82	MEWZ81		
		IVIL WZ65	IVIL W ZOZ	IVIL WZ61		
	Background	22100	10700	7000		
Aluminum	15800	22100	13700	7000		
Antimony	9.4 UJN	9.9 UJN	8.2 UJN	9.9 UJN		
Arsenic	6.1 JNS	10.5 JNS	10.9 JNS	3.0 JBN		
Barium	114	123	87.1	352		
Beryllium	0.87 B	1.2 B	0.83 B	0.38 U		
Cadmium	0.72 U	0.82 B	0.71 B	0.76 U		
Calcium	6790	6380	10700	11200		
Chromium	20.6	28.6	18.3	18.8		
Cobalt	11.2 B	12.3 B	10.3 B	4.6 B		
Copper	22.0 JE	67.4 JE	23.1 JE	15.1 JE		
Iron	25800	29400	26000	7910		
Lead	34.1 S	61.3 S	40.7 S	52.7 S		
Magnesium	5710	6000	7880	22900		
Manganese	578	358	581	279		
Mercury	0.18 U	0.19 U	0.16 U	0.19 U		
Nickel	23.2	29.2	27.0	6.1 B		
Potassium	2380	3380	1950	3250		
Selenium	0.72 B	0.84 B	0.69 B	0.38 UJW		
Silver	0.72 U	0.76 U	0.63 U	0.76 U		
Sodium	109 B	195 B	99.3 B	401 B		
Thallium	0.53 B	0.68 JB	0.35 B	0.38 U		
Vanadium	32.8	40.2	28.5	10.1 B		
Zinc	85.2	149	94.4	47.6		
Cyanide	0.91 U	0.95 U	0.79 U	0.95 U		

sedmeta

Shaded areas denotes key sample.


Table D-21							
Semivolatile Organic Analysis for Sediment Samples							
Tentatively Identified Compounds							
Drum Disposal Area							
	Retention	Estimated					
Compound Name	Time	Concentration (µg/kg)					
Sample ST02 (EWW83)							
Unknown	5.78	320 J					
Sample ST04 (EWW81RE)							
Unknown	4.38	320 J					

tic-sed

Appendix E

Site Photographs

Drum Disposal Area

FRE00074

Time: 1042

Photo Taken By: John Quinn

Photo Number: 1

Location/ILD #: Drum Disposal - SSI Reconnaissance, ILD 984 791 681

Direction of Photo: East

Description: Photo showing MW-8 and empty drums for ppe.

Date: 7-1-93

Time: 1043

Photo Taken By: John Quinn

Photo Number: 2

Location/ILD #: Drum Disposal - SSI Reconnaissance, ILD 984 791 681

Direction of Photo: West

Description: Photo showing two 55-gallon drums containing well development water.

Time: 1045

Photo Taken By: John Quinn

Photo Number: 3

Location/ILD #: Drum Disposal -SSI Reconnaissance, ILD 984 781 681

Direction of Photo: North

Description: Photo shows Drum Disposal area and surrounding monitoring wells.

Date: 7-1-93

Time: 1048

Photo Taken By: John Quinn

Photo Number: 4

Location/ILD #: Drum Disposal -SSI Reconnaissance, ILD 984 791 681

Direction of Photo: North

Description: Photo shows MW-10 with two drums containing well development water.

Time: 1053

Photo Taken By: John Quinn

Photo Number: 5

Location/ILD #: Drum Disposal -SSI Reconnaissance, ILD 984 791 681

Direction of Photo: North

Description: Photo shows monitoring

well nest.

Date: 7-1-93

Time: 1055

Photo Taken By: John Quinn

Photo Number: 6

Location/ILD #: Drum Disposal -SSI Reconnaissance, ILD 984 791 681

Direction of Photo: North

Description: Photo shows concrete debris, metal sheets, and an old tank.

Time: 1105

Photo Taken By: John Quinn

Photo Number: 7

Location/ILD #: Drum Disposal - SSI Reconnaissance, ILD 984 791 681

Direction of Photo: Southwest

Description: Photo shows monitoring wells 5S and 5D.

Date: 7-1-93

Time: 1112

Photo Taken By: John Quinn

Photo Number: 8

Location/ILD #: Drum Disposal -SSI Reconnaissance, ILD 984 791 681

Direction of Photo: West

Description: Photo shows the entrance gate.

Time: 0958

Photo Taken By: Mitchell P. Balek

Photo Number: 9

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: East

Description: A close-up of sample SS04 location. Soil is dark brown to black

clayey topsoil.

Date: 11-16-93

Time: 0959

Photo Taken By: Mitchell P. Balek

Photo Number: 10

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: East

Description: Further view of sample

SS04 location.

Time: 1025

Photo Taken By: Mitchell P. Balek

Photo Number: 11

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: A close-up of sample SS05 location. Soil is dark brown sandy gravel.

Date: 11-16-93

Time: 1025

Photo Taken By: Mitchell P. Balek

Photo Number: 12

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: Further view of sample

SS05 location.

Time: 1050

Photo Taken By: Mitchell P. Balek

Photo Number: 13

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: Southeast

Description: A close-up of sample SS03 location. Soil is light brown sandy gravel.

Date: 11-16-93

Time: 1050

Photo Taken By: Mitchell P. Balek

Photo Number: 14

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: Southeast

Description: Further view of sample

SS03 location.

Time: 1117

Photo Taken By: Mitchell P. Balek

Photo Number: 15

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: A close-up of sample SS01 location. Soil is red-brown to dark brown and grey-like topsoil.

Date: 11-16-93

Time: 1117

Photo Taken By: Mitchell P. Balek

Photo Number: 16

Location/ILD #: Drum Disposal

Area ILD 984 791 681

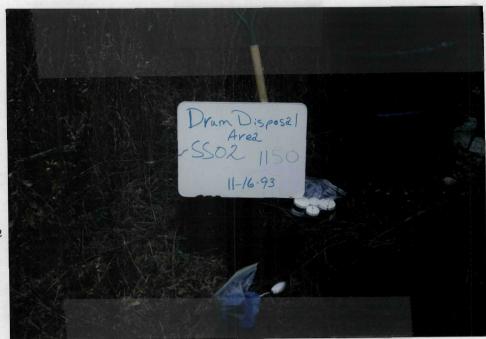
Direction of Photo: West

Description: Further view of sample

SS01 location.

Time: 1150

Photo Taken By: Mitchell P. Balek


Photo Number: 17

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: A close-up of sample SS02 location. Soil is dark brown to black topsoil.

Date: 11-16-93

Time: 1150

Photo Taken By: Mitchell P. Balek

Photo Number: 18

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: Further view of sample

SS02 location.

Time: 1405

Photo Taken By: Mitchell P. Balek

Photo Number: 19

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: Southwest

Description: A close-up of sample SS06 location. Soil is brown to dark brown

sandy clay.

Date: 11-16-93

Time: 1405

Photo Taken By: Mitchell P. Balek

Photo Number: 20

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: Southwest

Description: Further view of sample

SS06 location.

Time: 1425

Photo Taken By: Mitchell P. Balek

Photo Number: 21

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: A close-up of sample SS07 location. Soil is brown to dark brown sandy clay.

Date: 11-16-93

Time: 1425

Photo Taken By: Mitchell P. Balek

Photo Number: 22

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: Further view of sample

SS07 location.

Time: 1625

Photo Taken By: Joan V. Gonzalez

Photo Number: 23

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: Inorganic sample cooler sent to ITMO St. Louis Laboratory.

Date: 11-16-93

Time: 1645

Photo Taken By: Joan V. Gonzalez

Photo Number: 24

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: Organic sample cooler sent to Encotec Laboratory.

Time: 0907

Photo Taken By: Mitchell P. Balek

Photo Number: 25

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

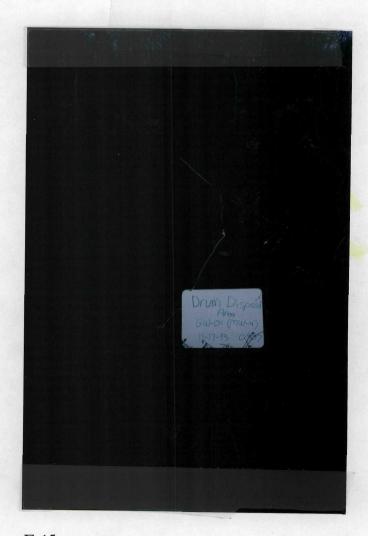
Description: Photo shows sample GW01

(MW-4) location.

Date: 11-17-93

Time: 0907

Photo Taken By: Mitchell P. Balek


Photo Number: 26

Location/ILD #: Drum Disposal

Area ILD 984 791 681

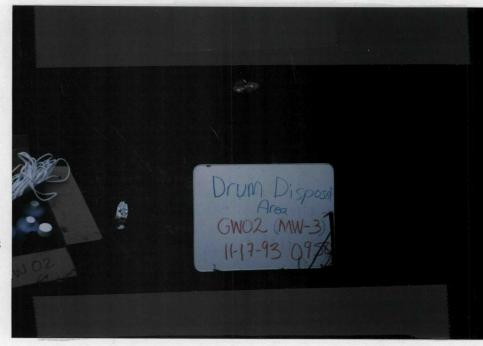
Direction of Photo: West

Description: Further view of sample GW01 (MW-4) location.

Time: 1030

Photo Taken By: Mitchell P. Balek

Photo Number: 27


Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: Northwest

Description: Photo shows sample GW02

(MW-3) location.

Date: 11-17-93

Time: 1030

Photo Taken By: Mitchell P. Balek

Photo Number: 28

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: Northwest

Description: Further view of sample

GW02 (MW-3) location.

Time: 1145

Photo Taken By: Mitchell P. Balek

Photo Number: 29

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: Northwest

Description: Photo shows sample GW04

(MW-7D) location.

Date: 11-17-93

Time: 1145

Photo Taken By: Mitchell P. Balek

Photo Number: 30

Location/ILD #: Drum Disposal Area ILD 984 791 681

Direction of Photo: Northwest

Description: Further view of sample GW04 (MW-7D) location.

Time: 1145

Photo Taken By: Mitchell P. Balek

Photo Number: 31

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: Northwest

Description: Photo shows sample GW06

(MW-7S) location.

Date: 11-17-93

Time: 1145

Photo Taken By: Mitchell P. Balek

Photo Number: 32

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: Northwest

Description: Further view of sample

GW06 (MW-7S) location.

Time: 0915

Photo Taken By: Joan V. Gonzalez

Photo Number: 33

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: North

Description: Photo shows sample GW05 (MW-6D) location.

Date: 11-17-93

Time: 0915

Photo Taken By: Joan V. Gonzalez

Photo Number: 34

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: North

Description: Further view of sample

GW05 (MW-6D) location.

Time: 1045

Photo Taken By: Joan V. Gonzalez

Photo Number: 35

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: Photo shows sample GW03

(MW-2) location.

Time: 1045

Photo Taken By: Joan V. Gonzalez

Photo Number: 36

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: Further view of sample

GW03 (MW-2) location.

Time: 1800

Photo Taken By: Joan V. Gonzalez

Photo Number: 37

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: Photo shows the inorganic sample cooler sent to SVL Analytical Laboratory. Photo taken at ARCS V contractor's warehouse.

Date: 11-17-93

Time: 1800

Photo Taken By: Joan V. Gonzalez

Photo Number: 38

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: Photo shows three organic sample coolers sent to Keystone Laboratory. Photo taken at ARCS V contractor's warehouse.

Time: 0850

Photo Taken By: Joan V. Gonzalez

Photo Number: 39

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: Southeast

Description: A close-up of the sediment

sample ST04 location.

Date: 11-18-93

Time: 0850

Photo Taken By: Joan V. Gonzalez

Photo Number: 40

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: Southeast

Description: Further view of ST04

location.

Time: 0850

Photo Taken By: Joan V. Gonzalez

Photo Number: 41

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: Southwest

Description: Photo shows the site fence from a ridge approximately 45-feet from wetland.

Date: 11-18-93

Time: 0850

Photo Taken By: Joan V. Gonzalez

Photo Number: 42

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: Southwest

Description: Photo shows the site fence from the wetland.

Time: 0910

Photo Taken By: Joan V. Gonzalez

Photo Number: 43

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: Southwest

Description: A close-up of samples SW01 and ST01 location. Sediment is dark brown to black, sandy silt with organic matter.

Date: 11-18-93

Time: 0910

Photo Taken By: Joan V. Gonzalez

Photo Number: 44

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: Southwest

Description: Further view of SW01 and

ST01 location.

Time: 0910

Photo Taken By: Joan V. Gonzalez

Photo Number: 45

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: North

Description: Further view of SW01 and

ST01 location.

Date: 11-18-93

Time: 1020

Photo Taken By: Joan V. Gonzalez

Photo Number: 46

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: A close-up of samples SW03 and ST03 location. Sediment is medium brown sandy silt with organic matter.

Time: 1020

Photo Taken By: Joan V. Gonzalez

Photo Number: 47

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: Further view of SW03 and

ST03 location.

Date: 11-18-93

Time: 1110

Photo Taken By: Joan V. Gonzalez

Photo Number: 48

Location/ILD #: Drum Disposal Area ILD 984 791 681

Direction of Photo: Northeast

Description: A close-up of samples SW02 and ST02 location. Sediment is dark brown sandy silt with organic matter.

Time: 1110

Photo Taken By: Joan V. Gonzalez

Photo Number: 49

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: Northeast

Description: Further view of SW02 and

ST02 location.

Date: 11-18-93

Time: 1630

Photo Taken By: Joan V. Gonzalez

Photo Number: 50

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: Photo shows one inorganic sediment sample cooler sent to SVL Analytical Laboratory and one organic sediment sample cooler sent to Keystone Laboratory. Photo taken at ARCS V contractor's warehouse.

Time: 1630

Photo Taken By: Joan V. Gonzalez

Photo Number: 51

Location/ILD #: Drum Disposal

Area ILD 984 791 681

Direction of Photo: West

Description: Photo shows one inorganic surface water sample cooler sent to ITMO Laboratory and two organic surface water sample coolers sent to Encotec Laboratory. Photo taken at ARCS V contractor's warehouse.

Appendix F

Representative Well Logs

Drum Disposal Area

BORING/WELL I.D. SB-3/MW-2
DATE DRILLED: 10/29/90
GROUT TYPE/QUANTITY: Bentonite Pellets
GROUT INTERVAL: To Surface
CASING TYPE/DIA: Stainless # 304
CASING LENGTH: 9'
SCREEN TYPE/LENGTH: 51
SCREENED INTERVAL: 9'-14'
GRAVEL PACK TYPE: Quartz Sand
GRAVEL PACK INTERVAL: 7'-14'

DEPTH

NOTES:

FORMATION	DESCRIPTION
-----------	-------------

1	ł	1		•				
0-3.5'	Fill:	Brown	silty	loam.	Organic.	Dry	no	odors.

3.5'-8.5' Sand: Tan/brown coarse grained poorly sorted silty sand. Moist. No hydro-

carbon odros present.

July 10' Sand: Tan/brown coarse grained sand with minor gravel component (15%).

Moist. No hydrocarbon odors present.

10'-12' Sand: Tan/brown coarse grained sand and gravel. Saturated at 11 feet below

ground level. No hydrocarbon odors present.

12'-14' Gravel: Tan/brown coarse grained, poorly sorted, angular to sub-angular gravel

and sand with cobbles and pebbles. Saturated throughout. No sheen

observed. No odors.

DEPTH	BLOW COUNTS	PID
3.5'-5'	2-2-4	BDL
8.5'-10'	1-3-8	BDL
10'-12'	6-8-12	BDL
12'-14'	18-22-12	BDL

Note: BDL - Below Detectable Limits.

· · C Chainlists Jus

	 	
	PROJECT: Prairie Materials	BORING/WELL I.D. SB-6/MW-3
)	LOCATION: Orland Park, Illinois	DATE DRILLED: 10/30/90
	DRILLING METHOD: 6.25" Hollow-Stem Auger	GROUT TYPE/QUANTITY: Bentonite Pellets
	TOTAL DEPTH DRILLED: 14' BGL	GROUT INTERVAL: To Surface
•	DEPTH TO WATER: 10' BGL	CASING TYPE/DIA: Stainless #304
	STATIC WATER ELEVATION: N/A	CASING LENGTH: 9'
	GROUND ELEVATION: N/A	SCREEN TYPE/LENGTH: 51
	T.O.C. ELEVATION:	SCREENED INTERVAL:
•	LOGGED BY: George F. Moncek	GRAVEL PACK TYPE: Quartz Sand
	SIGNATURE: Show Monale	GRAVEL PACK INTERVAL: 7'-14'
Ī	7 /	

NOTES:

Hydrocarbon odors were observed at a depth of 8.5'-12'

DEPTH		ATION DESCRIPTION
0-3.5'	Fill:	Brown silty loam. Moist. No odors.
3.5'-8.5	Sand:	Tan/brown silty sand
8.5'-12'	Sand:	Gray silty sand. Moist to 10' below ground level. Saturated at 10' below ground level. Hydrocarbon odors present.
12'-14'	Clay:	Gray silty clay. Moist. No hydrocarbon odors present.

DEPTH	BLOW COUNTS	PID
3.51-51	3-4-4	BDL
8.5'-10'	4-2-3	50 ppm
10'-12'	1-2-4-6	2 ppm
12'-14'	16-12-19-20	1 ppm

Note: BDL - Below Detectable Limits.

- Duninia Sucinaumental Shorialists. Jus. -

PROJECT: Prairie Materials	BORING/WELL I.D. SB-8/MW-4
LOCATION: Orland Park, Illinois	DATE DRILLED: 10/30/90
DRILLING METHOD: 6.25" Hollow-Stem Auger	GROUT TYPE/QUANTITY: Bentonite Pellets
TOTAL DEPTH DRILLED: 14 BGL	GROUT INTERVAL: To Surface
DEPTH TO WATER: 11' BGL	CASING TYPE/DIA: Stainless #304
STATIC WATER ELEVATION: N/A	CASING LENGTH: 91
GROUND ELEVATION: N/A	SCREEN TYPE/LENGTH: 51
T.O.C. ELEVATION: , N/A	SCREENED INTERVAL:
LOGGED BY: George F. Moncek	GRAVEL PACK TYPE: Quartz Sand
SIGNATURE: Mirgi Monoila	GRAVEL PACK INTERVAL: 7'-14'
NOTES:	·

DEPTH

FORMATION DESCRIPTION

0-8.51

Fill: Brown silty loam. Moist. No odors

8.5'-10'

Sand: Tan/brown coarse grained sand. Moist. No hydrocarbon odors present.

101 141

Sand: Tan/brown medium grained sand. Saturated at 11' below ground level.

No hydrocarbon odors present.

DEPTH	BLOW COUNTS	PID
3.5'-5'	6-10-12	BDL
8.5'-10'	3-2-9	BDL
10'-12'	1-2-3-3	BDL
12'-14'	3-8-19-21	BDL

Note: BDL - Below Detectable Limits.

Dusinio Funinaumoutal. Specialists. Inc.

	•
BORING/WFI	L LOG DATA

PROJECT: Prairie Materials	BORING/WELL I.D.: MW-6D
LOCATION: Orland Park, Illinois	DATE DRILLED: 1-29-92
DRILLING METHOD: 6 1/4" I.D. HSA	GROUT TYPE/QUANTITY: Bentonite Pellets/Grout
TOTAL DEPTH DRILLED: 59.5' BGL	GROUT INTERVAL: -43.5' + 1' AGL, Concrete
DEPTH TO WATER: 18.28' TOC (6-17-92)	CASING TYPE/DIA: 2" Diameter Stainless (#304)
STATIC WATER ELEVATION: 661.42	CASING LENGTH: -49.5' + 2.5' AGL
GROUND ELEVATION: 677.38	SCREEN TYPE/LENGTH: 10' Stainless (#304)
T.O.C. ELEVATION; 679.70	SCREENED INTERVAL: -59.5'-49.5' BGL (0.01 Slot)
LOGGED BY: Michael J. Kohl	GRAVEL PACK TYPE: Washed Quartz Sand
SIGNATURE: Michael J. Kahl	GRAVEL PACK INTERVAL: -59.5'-43.5'

NOTES: BGL -Below Ground Level TOC -Top of Casing HSA -Hollow Stem Auger AGL -Above Ground Level

DEPTH	FORMATION DESCRIPTION
0' - 6'	FILL: Tan/brown coarse to fine silty sand Fill, trace to little gravel and clay, trace roots moist, (Note: Asphalt aggregate fill material), no visual/olfactory evidence of contamination.
6′ - 16′	CLAY: Black to brown silty sand Clay with trace-some fine to medium gravel, wet to saturated. (Note: 2" Brown coarse to fine sand and 4" brown silt at bottom 6" of spoon at 15.5' - 16' BGL), no visual/olfactory evidence of contamination.
16'- 21.5'	SAND: Brown and gray coarse to fine poorly sorted Sand, trace to little angular subangular fine to medium gravel, saturated conditions. (Note: 4" brown silt at 16' - 18' sample interval upper spoon), no visual/olfactory evidence of contamination.
21.5′- 31.5′	CLAY: Brown gray silty Clay with trace angular - subangular fine gravel, wet-saturated (Note: increase of sand content at 28.5' - 30.5' BGL sampling interval), no visual/olfactory evidence of contamination.
31.5′-45′	SAND: Brown and gray coarse to fine poorly sorted Sand, trace some fine gravel, saturated conditions. (Note: Gradation of sands/gravels occurs throughout sampling intervals). Gray sandy silt at 40' - 40.5' BGL, no visual/olfactory evidence of contamination.
45'-54'	CLAYEY SILT: Gray Clayey Silt with fine sand lenses moist to wet. (Note: 1/4"-1/2" fine sand lenses throughout sampling sequence), no visual/olfactory evidence of contamination.
54'-59.5'	SAND: Gray silty fine Sand grading to coarse to fine sand at 56.3' BGL, trace angular - subangular dolomite pieces and gravel, saturated conditions. Bedrock: Gray Dolomite at 59.5', no visual/olfactory evidence of contamination.

PROJECT: Prairie Materials	BORING/WELL I.D.: MW-7S
CATION: Orland Park, Illinois	DATE DRILLED: 1-29-92
DRILLING METHOD: 4 1/4" I.D. HSA	GROUT TYPE/QUANTITY: Bentonite Pellets/Grout
TOTAL DEPTH DRILLED: 21' BGL	GROUT INTERVAL: -3' - 1' BGL, Concrete
DEPTH TO WATER: 13.97' TOC (6-17-92)	CASING TYPE/DIA: 2" Diameter Stainless (#304)
STATIC WATER ELEVATION: 662.56	CASING LENGTH: -5' + 3' AGL
GROUND ELEVATION: 673.86	SCREEN TYPE/LENGTH: 15' Stainless (#304)
T.O.C. ELEVATION: 676.53	SCREENED INTERVAL: -21' - 5' BGL (0.01 Slot)
LOGGED BY: Robert E. Renguso	GRAVEL PACK TYPE: Washed Quartz Sand
SIGNATURE: Robot E. Riggoo	GRAVEL PACK INTERVAL: -21' - 3' BGL

NOTES: BGL -Below Ground Level TOC -Top of Casing HSA - Hollow Stem Auger AGL -Above Ground Level

DEPTH	FORMATION DESCRIPTION

- 11' CLAY: Brown to orange-brown silty sandy clay with 1" - 6" fine-coarse sand/gravel lenses, trace angular-subangular gravel, moist to saturated conditions, no visual/olfactory evidence of contamination.

11' - 19' CLAY: Brown/gray to orange-brown silty sandy Clay, trace fine gravel grading to gray mottled Clay, moist-wet. (Note: Fine to medium sand and silt lenses/partings throughout sampling sequence at 15' - 19' sampling sequence), no visual/olfactory evidence of contamination.

DEPTH INTERVAL (FTBGL) 1' - 3'	BLOW COUNTS 2-4-5-6	FIELD PID (PPM) BDL
3' - 5'	2-3-5-4	BDL
5' - 7'	3-3-4-3	BDL
7' - 9'	2-1-3-4	BDL
9' - 11'	, 4-4-4-5	BDL
11' - 13'	3-3-7-7	BDL
13' - 15'	11-9-9-7	BDL
15' - 17'	3-3-7-6	BDL
17' - 19'	8-5-7-6	BDL

Note: The soil samples were screened for volatile organic vapors using a calibrated HNu Meter (Model PI-101) with 10.2 eV probe and are expressed in parts-permillion (ppm) meter unit concentrations.

BDL = Below Detection Limit.

BORING/WELL LOG DATA		
PROJECT: Prairie Materials	BORING/WELL I.D.: MW-7D	
LOCATION: Orland Park, Illinois	DATE DRILLED: 1-30-92	
DRILLING METHOD: 4 1/4" I.D. HSA	GROUT TYPE/QUANTITY: Bentonite Pellets/Grout	
TOTAL DEPTH DRILLED: 49' BGL	GROUT INTERVAL: -32'-3' BGL, Concrete	
DEPTH TO WATER: 15.08' TOC (6-17-92)	CASING TYPE/DIA: 2" Diameter Stainless (#304)	
STATIC WATER ELEVATION: 661.42	CASING LENGTH: -39' + 2.5' AGL	
GROUND ELEVATION: 674.13	SCREEN TYPE/LENGTH: 10' Stainless (#304)	
T.O.C. ELEVATION: 676.50	SCREENED INTERVAL: -49'-39' BGL (0.01 Slot)	
LOGGED BY: Robert E. Renguso	GRAVEL PACK TYPE: Washed Quartz Sand	
SIGNATURE: Robert E. Rugger	GRAVEL PACK INTERVAL: -49'-32' BGL	
NOTES: BGL -Below Ground Level TOC -Top of Casing HSA -Hollow Stem Auger AGL -Above Ground Level		
DEPTH FORMATION DESCRIPTION		

NOTES: BGL	-Below Ground Level 10C -10p of Casing InSA -Hollow Stem Auger AGL -Above Ground Level
DEPTH	FORMATION DESCRIPTION
0' - 11'	<u>CLAY:</u> Brown to orange-brown silty sandy <u>Clay</u> trace fine-medium angular and subanglar gravel and roots, strong oxidation zones, wet to saturated conditions, no visual/olfactory evidece of contamination.
11'- 23.5'	<u>CLAY</u> : Gray mottled <u>Clay</u> , trace fine subangular gravel, (Note: Gray silt lenses and partings throughout sampling sequence, wet-saturated conditions, no visual/olfactory evidence of contamination.
23.5′-47′	SAND: Brown and gray well poorly Sand, coarse-fine grained, trace angular-subangular gravel, saturated conditions. Bedrock Gray Dolomite at 47' BGL. No visual/olfactory evidence of contamination.